Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Efficient global optimisation of microwave antennas based on a parallel surrogate model-assisted evolutionary algorithm

Efficient global optimisation of microwave antennas based on a parallel surrogate model-assisted evolutionary algorithm

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Computational efficiency is a major challenge for evolutionary algorithm (EA)-based antenna optimisation methods due to the computationally expensive electromagnetic simulations. Surrogate model-assisted EAs considerably improve the optimisation efficiency, but most of them are sequential methods, which cannot benefit from parallel simulation of multiple candidate designs for further speed improvement. To address this problem, a new method, called parallel surrogate model-assisted hybrid differential evolution for antenna optimisation (PSADEA), is proposed. The performance of PSADEA is demonstrated by a dielectric resonator antenna, a Yagi-Uda antenna, and three mathematical benchmark problems. Experimental results show high operational performance in a few hours using a normal desktop 4-core workstation. Comparisons show that PSADEA possesses significant advantages in efficiency compared to a state-of-the-art surrogate model-assisted EA for antenna optimisation, the standard parallel differential evolution algorithm, and parallel particle swarm optimisation. In addition, PSADEA also shows stronger optimisation ability compared to the above reference methods for challenging design cases.

References

    1. 1)
      • 14. Santner, T.J., Williams, B.J., Notz, W.I.: ‘The design and analysis of computer experiments’ (Springer-Verlag, New York, 2003, 1st edn).
    2. 2)
      • 6. Liu, B., Aliakbarian, H., Ma, Z., et al: ‘An efficient method for antenna design optimisation based on evolutionary computation and machine learning techniques’, IEEE Trans. Antennas Propag., 2014, 62, (1), pp. 718.
    3. 3)
      • 19. Stein, M.: ‘Large sample properties of simulations using Latin hypercube sampling’, Technometrics, 1987, 29, (2), pp. 143151.
    4. 4)
      • 4. Di Barba, P., Dughiero, F., Forzan, M., et al: ‘Migration-corrected NSGA-II for improving multi-objective design optimisation in electromagnetics’, Int. J. Appl. Electromagn. Mech., 2016, 51, (2), pp. 161172.
    5. 5)
      • 13. Jones, D.R., Schonlau, M., Welch, W.J.: ‘Efficient global optimisation of expensive black-box functions’, J. Glob. Optimisation, 1998, 13, (4), pp. 455492.
    6. 6)
      • 9. Koziel, S., Bekasiewicz, A., Zieniutycz, W.: ‘Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 631634.
    7. 7)
      • 24. Michalewicz, Z., Schoenauer, M.: ‘Evolutionary algorithms for constrained parameter optimization problems’, Evol. Comput., 1996, 4, (1), pp. 132.
    8. 8)
      • 18. Price, K., Storn, R.M., Lampinen, J.A.: ‘Differential evolution: a practical approach to global optimisation’ (Springer-Verlag, Berlin, Heidelberg, 2005, 1st edn.).
    9. 9)
      • 12. Liu, B., Koziel, S., Zhang, Q.: ‘A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimisation problems’, J. Comput. Sci., 2016, 12, pp. 2837.
    10. 10)
      • 20. Jamil, M., Yang, X.: ‘A literature survey of benchmark functions for global optimisation problems’, Int. J. Math. Model. Numer. Optimisation, 2013, 4, (2), pp. 150194.
    11. 11)
      • 10. Koziel, S., Bekasiewicz, A.: ‘Multi-objective optimisation of expensive electromagnetic simulation models’, Appl. Soft Comput., 2016, 47, pp. 332342.
    12. 12)
      • 16. Dennis, J.E., Torczon, V.: ‘Managing approximation models in optimisation’, in Alexandrov, N.M., Hussaini, M.Y. (Eds.): ‘Multidisciplinary design optimisation: state-of-the-art’ (SIAM, Philadelphia, PA, USA, 1997), pp. 330347.
    13. 13)
      • 8. Liu, B., Gielen, G.G.E., Fernandez, F.V.: ‘Automated design of analog and high-frequency circuits’ (Springer-Verlag, Berlin, Heidelberg, 2014, 1st edn.).
    14. 14)
      • 25. Wilcoxon, F.: ‘Individual comparisons by ranking methods’, Biom. Bull., 1945, 1, (6), pp. 8083.
    15. 15)
      • 22. Koziel, S., Ogurtsov, S.: ‘Multi-point response correction for cost-efficient antenna and microwave design optimisation’. Loughborough Antennas Propagation Conf., Loughborough, UK, November 2013, pp. 548552.
    16. 16)
      • 23. Koziel, S., Ogurtsov, S.: ‘Multi-objective design of antennas using variable-fidelity simulations and surrogate models’, IEEE Trans. Antennas Propag., 2013, 61, (12), pp. 59315939.
    17. 17)
      • 1. Deb, A., Roy, J.S., Gupta, B.: ‘Performance comparison of differential evolution, particle swarm optimisation and genetic algorithm in the design of circularly polarized microstrip antennas’, IEEE Trans. Antennas Propag., 2014, 62, (8), pp. 39203928.
    18. 18)
      • 15. Emmerich, M.T.M., Giannakoglou, K.C., Naujoks, B.: ‘Single-and multiobjective evolutionary optimisation assisted by Gaussian random field metamodels’, IEEE Trans. Evol. Comput., 2006, 10, (4), pp. 421439.
    19. 19)
      • 17. Couckuyt, I., Forrester, A., Gorissen, D., et al: ‘Blind Kriging: implementation and performance analysis’, Adv. Eng. Softw., 2012, 49, pp. 113.
    20. 20)
      • 21. Goldberg, D.E., Deb, K.: ‘A comparative analysis of selection scheme used in genetic algorithms’, Found. Genet. Algorithm, 1991, 1, pp. 6993.
    21. 21)
      • 5. Siah, E.S., Sasena, M., Volakis, J.L.: ‘Fast parameter optimisation of large-scale electromagnetic objects using DIRECT with Kriging metamodelling’, IEEE Trans. Microw. Theory Tech., 2004, 52, (1), pp. 276285.
    22. 22)
      • 3. Gregory, M.D., Bayraktar, Z., Werner, D.H.: ‘Fast optimisation of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp. 12751285.
    23. 23)
      • 7. ‘CST microwave studio: technical specification’. Available at www.cst.com, accessed October 2017.
    24. 24)
      • 2. Sato, Y., Campelo, F., Igarashi, H.: ‘Meander line antenna design using an adaptive genetic algorithm’, IEEE Trans. Magn., 2013, 49, (5), pp. 18891892.
    25. 25)
      • 11. Liu, B., Zhang, Q., Gielen, G.G.E., et al: ‘A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimisation problems’, IEEE Trans. Evol. Comput., 2014, 18, (2), pp. 180192.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5009
Loading

Related content

content/journals/10.1049/iet-map.2018.5009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address