access icon free Circular configuration of perforated dielectrics for ultra-broadband, wide-angle, and polarisation-insensitive monostatic/bistatic RCS reduction

Here, a new strategy of ultra-broadband monostatic and bistatic radar cross-section reduction (RCSR) was theoretically investigated. A circular configuration of perforated dielectrics, as the coating layer, was designed to have full control on the bistatic RCS signatures of flat metallic objects. Using the proposed phase cancellation method, a customised level of bistatic RCSR (BRR) as well as operating frequency bandwidth were interpretively achieved. The presented study offered a robust and straightforward RCSR technique which does not rely on conventional blind optimisations. The coating layer was capable of reducing the monostatic and BRR of >10 dB in a broad frequency range from 8.3 to 23.1 GHz (BW = 94%). The results were significantly improved compared to those of preceding researches. Besides, unlike the preceding researches, the performance of the designed coating layer was analytically justified under TE and TM polarisations of oblique incidences. A good agreement was observed between numerical simulations and theoretical predictions, confirming the polarisation-independent feature of the designed stealth coating layer for incident angles up to . These superior performances and the flexibility of design guarantee the applicability of the proposed RCSR approach for various stealth applications.

Inspec keywords: coatings; radar cross-sections; numerical analysis; dielectric properties; electromagnetic wave polarisation

Other keywords: ultra-broadband-insensitive monostatic-bistatic RCS reduction; bistatic radar cross-section reduction; wide-angle-insensitive monostatic-bistatic RCS reduction; perforated dielectrics; TE polarisations; bistatic RCS signatures; polarisation-insensitive monostatic-bistatic RCS reduction; bistatic RCSR technique; circular configuration; polarisation-independent feature; frequency 8.3 GHz to 23.1 GHz; oblique incidences; TM polarisations; numerical simulations; incident angles; phase cancellation method; stealth coating layer; flat metallic objects; operating frequency bandwidth

Subjects: Other numerical methods; Radar theory

References

    1. 1)
      • 16. Zhou, Y., Cao, X.Y., Gao, J., et al: ‘RCS reduction for grazing incidence based on coding metasurface’, Electron. Lett., 2017, 53, (20), pp. 13811383.
    2. 2)
      • 9. Hong, T., Dong, H., Wang, J., et al: ‘A novel combinatorial triangle-type AMC structure for RCS reduction’, Microw. Opt. Technol. Lett., 2015, 57, (12), pp. 27282732.
    3. 3)
      • 17. Chen, K, Feng, Y., Yang, Z., et al: ‘Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering’, Sci. Rep., 2016, 6, p. 35968.
    4. 4)
      • 12. Cui, T.J., Qi, M.Q., Wan, X., et al: ‘Coding metamaterials, digital metamaterials and programming metamaterials’, arXiv preprint arXiv:1407.8442, 2014.
    5. 5)
      • 3. Ghosh, S., Bhattacharyya, S., Srivastava, K.V.: ‘Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber’, IET Microw. Antennas Propag., 2016, 10, (8), pp. 850855.
    6. 6)
      • 11. Chen, W., Balanis, C.A., Birtcher, C.R.: ‘Checkerboard EBG surfaces for wideband radar cross section reduction’, IEEE Trans. Antennas Propag., 2015, 63, (6), pp. 26362645.
    7. 7)
      • 13. Cui, T.J., Liu, S., Zhang, L.: ‘Information metamaterials and metasurfaces’, J. Mater. Chem. C, 2017, 5, (15), pp. 36443668.
    8. 8)
      • 10. Edalati, A., Sarabandi, K.: ‘Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 747754.
    9. 9)
      • 4. Paquay, M., Iriarte, J.C., Ederra, I., et al: ‘Thin AMC structure for radar cross-section reduction’, IEEE Trans. Antennas Propag., 2007, 55, (12), pp. 36303638.
    10. 10)
      • 2. Kazemzadeh, A., Karlsson, A.: ‘Multilayered wideband absorbers for oblique angle of incidence’, IEEE Trans. Antennas Propag., 2010, 58, (11), pp. 36373646.
    11. 11)
      • 20. Chan, S.C., Chen, H.H.: ‘Uniform concentric circular arrays with frequency-invariant characteristics – theory, design, adaptive beamforming and DOA estimation’, IEEE Trans. Signal Process., 2007, 55, (1), pp. 165177.
    12. 12)
      • 7. Zheng, Y., Gao, J., Cao, X., et al: ‘Wideband radar cross section reduction covering X and Ku band using artificial magnetic conductor structures’. 2015 IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), IEEE, 2015.
    13. 13)
      • 21. Sihvola, A.H.: ‘Electromagnetic mixing formulas and applications’, No. 47. Iet, 1999.
    14. 14)
      • 8. Esmaeli, S.H., Sedighy, S.H.: ‘Wideband radar cross-section reduction by AMC’, Electron. Lett., 2015, 52, (1), pp. 7071.
    15. 15)
      • 5. Zhang, Y., Mittra, R., Wang, B.Z., et al: ‘AMCs for ultra-thin and broadband RAM design’, Electron. Lett., 2009, 45, (10), pp. 484485.
    16. 16)
      • 19. Moccia, L., Liu, S., Wu, R.Y., et al: ‘Coding metasurfaces for diffuse scattering: scaling laws, bounds, and suboptimal design’, Adv. Opt. Mater., 2017, 5, (19) p. 1700455.
    17. 17)
      • 22. Kishk, A.A., Lee, K.F.: ‘Experimental investigation for wideband perforated dielectric resonator antenna’, Electron. Lett., 2006, 42, (3), p. 1.
    18. 18)
      • 14. Zhang, H, Lu, Y., Su, J., et al: ‘Coding diffusion metasurface for ultra-wideband RCS reduction’, Electron. Lett., 2017, 53, (3), pp. 187189.
    19. 19)
      • 6. Galarregui, J.C.I., Pereda, A.T., De Falcon, J.L.M., et al: ‘Broadband radar cross-section reduction using AMC technology’, IEEE Trans. Antennas Propag., 2013, 61, (12), pp. 61366143.
    20. 20)
      • 15. Rouhi, K., Rajabalipanah, H., Abdolali, A.: ‘Real-time and broadband terahertz wave scattering manipulation via polarization-insensitive conformal graphene-based coding metasurfaces’, Ann. Phys., 2018, 530, (4), p. 1700310.
    21. 21)
      • 1. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley & Sons, New York, 2016).
    22. 22)
      • 18. Huang, C, Sun, B., Pan, W., et al: ‘Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface’, Sci. Rep., 2017, 7, p. 42302.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.0072
Loading

Related content

content/journals/10.1049/iet-map.2018.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading