access icon free Improving radiation performance of extremely truncated RCAs through near-field analysis

This paper studies the cause of low-broadside directivity and high sidelobe levels (SLLs) in compact resonant-cavity antennas (RCAs) (footprint ). An approach to determine an optimal near-field distribution to significantly improve the broadside directivity and SLL of RCAs is presented. A near-field to far-field transformation routine developed in MATLAB is used to study the individual effects of amplitude and phase distributions, above the partially reflecting superstrate (PRS) of RCAs. Unlike the direct use of a full-wave simulator design, this new approach allows the designers to understand the individual effects of amplitude and phase distributions in the radiating near-field region, on the broadside directivity and on the SLL in the far-field radiation pattern. A method to realise a desired complex near-field distribution is demonstrated, using a dielectric PRS. The RCA with the new PRS showed a significant improvement of 5.0 and 6.4 dB in the broadside directivity and SLL, respectively, compared with a uniform PRS without compromising the footprint and profile of the antenna. The predictions of MATLAB are validated using computer simulation technology (CST) microwave studio (MWS) and experiments

Inspec keywords: cavity resonators; antenna radiation patterns; directive antennas

Other keywords: full-wave simulator design; partially reflecting superstrate; radiating near-field region; compact resonant-cavity antennas; far-field transformation routine; phase distributions; dielectric PRS; near-field analysis; SLLs; CST MWS; Matlab; far-field radiation pattern; amplitude distributions; optimal near-field distribution; low-broadside directivity; high sidelobe levels; extremely truncated RCAs; radiation performance

Subjects: Single antennas; Waveguide and microwave transmission line components

References

    1. 1)
      • 14. Ge, Y., Sun, Z., Chen, Z., et al: ‘A high-gain wideband low profile Fabry–Perot resonator antenna with a conical short horn’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, (99), pp. 18891892.
    2. 2)
      • 20. Yu, A.Z.E.W., Li, W., Samii, Y.R.: ‘Advanced computational electromagnetic methods and applications’ (Artech House, Boston, 2015).
    3. 3)
      • 5. Feresidis, A.P., Vardaxoglou, J.C.: ‘High gain planar antenna using optimised partially reflective surfaces’, IEEE Trans. Antennas Propag., 2001, 148, (6), pp. 345350.
    4. 4)
      • 10. Zhao, T., Jackson, D., Williams, J., et al: ‘Radiation characteristics of a 2D periodic leaky-wave antenna using metal patches or slots’. Antennas and Propagation Society Int. Symp. 2001, San Antonio, TX, USA, July 2001, vol. 3, pp. 260263.
    5. 5)
      • 17. Wang, M., Huang, C., Pu, M., et al: ‘Reducing side lobe level of antenna using frequency selective surface superstrate’, Microw. Opt. Technol. Lett., 2015, 57, (8), pp. 19711975.
    6. 6)
      • 1. Weily, A.R., Horvath, L., Esselle, K.P., et al: ‘A planar resonator antenna based on a woodpile EBG material’, IEEE Trans. Antennas Propag., 2005, 53, (1), pp. 216223.
    7. 7)
      • 8. Ge, Y., Esselle, K.P.: ‘A method to design dual-band, high-directivity EBG resonator antennas using single-resonant, single-layer partially reflective surfaces’, Prog. Electromagn. Res. C, 2010, 13, pp. 245257.
    8. 8)
      • 2. Baba, A.A., Hashmi, R.M., Esselle, K.P.: ‘Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variation’, Electron. Lett., 2016, 52, (4), pp. 266268.
    9. 9)
      • 9. Liu, Z., Zhang, W., Fu, D., et al: ‘Broadband Fabry–Perot resonator printed antennas using FSS superstrate with dissimilar size’, Microw. Opt. Technol. Lett., 2008, 50, (6), pp. 16231627.
    10. 10)
      • 6. Konstantinidis, K., Feresidis, A., Hall, P.: ‘Dual-slot feeding technique for broadband Fabry–Perot cavity antennas’, IET Microw. Antennas Propag., 2015, 9, pp. 281866.
    11. 11)
      • 16. Keizer, W.P.M.N.: ‘Synthesis of thinned planar circular and square arrays using density tapering’, IEEE Trans. Antennas Propag., 2014, 62, (4), pp. 15551563.
    12. 12)
      • 4. Trentini, G.: ‘Partially reflecting sheet arrays’, IEEE Trans. Antennas Propag., 1956, 4, (4), pp. 666671.
    13. 13)
      • 3. Baba, A., Hashmi, R., Esselle, K.: ‘Achieving a large gain-bandwidth product from a compact antenna’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 34373446.
    14. 14)
      • 13. Hashmi, R.M., Esselle, K.P.: ‘A wideband EBG resonator antenna with an extremely small footprint area’, Microw. Opt. Technol. Lett., 2015, 57, (7), pp. 15311535.
    15. 15)
      • 7. Ge, Y., Esselle, K.P., Hao, Y.: ‘Design of low-profile high-gain EBG resonator antennas using a genetic algorithm’, IEEE Antennas Wirel. Propag. Lett., 2007, 6, pp. 480483.
    16. 16)
      • 19. Wang, J.J.H.: ‘An examination of the theory and practices of planar near-field measurement’, IEEE Trans. Antennas Propag., 1988, 36, (6), pp. 746753.
    17. 17)
      • 18. Johnson, R.C., Ecker, H.A., Hollis, J.S.: ‘Determination of far-field antenna patterns from near-field measurements’, Proc. IEEE, 1973, 61, (12), pp. 16681694.
    18. 18)
      • 11. Konstantinidis, K., Feresidis, A., Hall, P.: ‘Multilayer partially reflective surfaces for broadband Fabry–Perot cavity antennas’, IEEE Trans. Antennas Propag., 2014, 62, pp. 34743481.
    19. 19)
      • 12. Wang, N., Li, J., Wei, G., et al: ‘Wideband Fabry–Perot resonator antenna with two layers of dielectric superstrates’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 229232.
    20. 20)
      • 15. Khodier, M.M., Christodoulou, C.G.: ‘Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization’, IEEE Trans. Antennas Propag., 2005, 53, (8), pp. 26742679.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.0056
Loading

Related content

content/journals/10.1049/iet-map.2018.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading