Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modified model of equivalent height for predicting atmospheric attenuation at frequencies below 350 GHz

Due to atmospheric absorption, the signal attenuation must be considered when designing communication links in the terahertz (THz) band. The equivalent height described in International Telecommunication Union Recommendation (Rec. ITU)-R P.676 can be used to evaluate the signal attenuation over satellite links by meteorological parameters of the Earth's surface, which are relatively convenient to obtain. Since both temperature and water vapour content can greatly influence the absorption of THz waves and have temporal and spatial variability, the equivalent height should be a combined value representing the influences of temperature, water vapour, and pressure. However, only pressure is considered in the ITU-R P.676 model. As a result, it will cause inaccuracies for different regions and seasons. In this study, a modified model of the equivalent height with temperature and water vapour near the Earth's surface is proposed. Compared with the forward equivalent heights, the equivalent heights based on both models are evaluated. Analyses of the window frequencies are performed, and improved results are achieved with the modified model, especially for mid- and high-latitude winter profiles. The accuracy of the modified model for other profiles is also analysed and the results indicate its suitability.

References

    1. 1)
      • 6. Liebe, H.J.: ‘MPM – an atmospheric millimeter-wave propagation model’, Int. J. Infrared Millim. Waves, 1989, 10, (6), pp. 631650.
    2. 2)
      • 23. ‘Attenuation by atmospheric gases’, Recommendation ITU-R P.676-11, 2016.
    3. 3)
      • 22. Suen, J.Y., Fang, M.T., Lubin, P.M.: ‘Global distribution of water vapor and cloud cover—sites for high-performance THz applications’, IEEE Trans. Terahertz Sci. Technol., 2014, 4, (1), pp. 86100.
    4. 4)
      • 1. Federici, J., Moeller, L.: ‘Review of terahertz and subterahertz wireless communications’, J. Appl. Phys., 2010, 107, (11), p. 111101.
    5. 5)
      • 19. Mendrok, J.: ‘The SARTre model for radiative transfer in spherical atmospheres and its application to the derivation of cirrus cloud properties’. PhD dissertation, Freie Universität, Berlin, 2006.
    6. 6)
      • 3. Pelton, J.N.: ‘New millimeter, terahertz, and light-wave frequencies for satellite communications’, in Pelton, J.N., Madry, S., Camacho-Lara, S., et al (Eds.): ‘Handbook of satellite applications’ (Springer International Publishing, Switzerland, 2017), pp. 413429. Available at https://link.springer.com/referenceworkentry/10.1007/978-3-319-23386-4_98.
    7. 7)
      • 20. Baron, P., Mendrok, J., Kasai, Y., et al: ‘7-4 AMATERASU: model for atmospheric terahertz radiation analysis and simulation’, J. Nat. Inst. Inf. Commun. Technol., 2008, 55, (1), pp. 109121.
    8. 8)
      • 11. Traub, W.A., Stier, M.T.: ‘Theoretical atmospheric transmission in the mid-and far-infrared at four altitudes’, Appl. Opt., 1976, 15, (2), pp. 364377.
    9. 9)
      • 17. Buehler, S.A., Eriksson, P., Kuhn, T., et al: ‘ARTS, the atmospheric radiative transfer simulator’, J. Quant. Spectrosc. Radiat. Transf., 2005, 91, (1), pp. 6593.
    10. 10)
      • 15. Ishii, S., Sayama, S., Toshihisa, K.: ‘Measurement of rain attenuation in terahertz wave range’, Wirel. Eng. Technol., 2011, 2, (3), pp. 119124.
    11. 11)
      • 16. Urban, J., Baron, P., Lautié, N., et al: ‘Moliere (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range’, J. Quant. Spectrosc. Radiat. Transf., 2004, 83, (3-4), pp. 529554.
    12. 12)
      • 12. Sander, J.: ‘Rain attenuation of millimeter waves at λ = 5.77, 3.3, and 2 mm’, IEEE Trans. Antennas Propag., 1975, 23, (2), pp. 213220.
    13. 13)
      • 10. Pardo, J.R., Serabyn, E., Cernicharo, J.: ‘Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Niño conditions: implications for broadband opacity contributions’, J. Quant. Spectrosc. Radiat. Transf., 2001, 68, (4), pp. 419433.
    14. 14)
      • 9. Naylor, D.A., Davis, G.R., Gom, B.G., et al: ‘Atmospheric transmission at submillimetre wavelengths from Mauna Kea’, Mon. Not. R. Acad. Soc., 2000, 315, (3), pp. 622628.
    15. 15)
      • 13. Nemarich, J., Wellman, R.J., Lacombe, J.: ‘Backscatter and attenuation by falling snow and rain at 96, 140, and 225 GHz’, IEEE Trans. Geosci. Remote Sens., 1988, 26, (3), pp. 319329.
    16. 16)
      • 2. Song, H.-J., Nagatsuma, T.: ‘Present and future of terahertz communications’, IEEE Trans. Terahertz Sci. Technol., 2011, 1, (1), pp. 256263.
    17. 17)
      • 14. Ishii, S., Sayama, S., Mizutani, K.: ‘Rain attenuation at terahertz’, Wirel. Eng. Technol., 2010, 1, (2), pp. 9295.
    18. 18)
      • 21. Mendrok, J., Baron, P., Yasuko, K.: ‘7-5 the AMATERASU scattering module’, J. Nat. Inst. Inf. Commun. Technol., 2008, 55, (1), pp. 123133.
    19. 19)
      • 7. de Zafra, R.L., Parrish, A., Solomon, P.M., et al: ‘A quasi-continuous record of atmospheric opacity at λ = 1.1 mm over 34 days at Mauna Kea observatory’, Int. J. Infrared Millim. Waves, 1983, 4, (5), pp. 757765.
    20. 20)
      • 18. Eriksson, P., Buehler, S.A., Davis, C.P., et al: ‘ARTS, the atmospheric radiative transfer simulator, version 2’, J. Quant. Spectrosc. Radiat. Transf., 2011, 112, (10), pp. 15511558.
    21. 21)
      • 8. Serabyn, E., Weisstein, E.W., Lis, D.C., et al: ‘Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above mauna Kea’, Appl. Opt., 1998, 37, (12), pp. 21852198.
    22. 22)
      • 4. Fitch, M.J., Osiander, R.: ‘Terahertz waves for communications and sensing’, Johns Hopkins APL Tech. Dig., 2004, 25, (4), pp. 348355.
    23. 23)
      • 5. Liebe, H.J.: ‘An atmospheric millimetre wave propagation model’. NTIA Report 83-137, National Telecommunications and Information Administration, Institute for Telecommunication Sciences, 1983.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.1073
Loading

Related content

content/journals/10.1049/iet-map.2017.1073
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address