Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal

Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel electrically steerable planar array antenna based on liquid crystal (LC) is elaborately designed, fabricated and measured. The occupied area and undesired coupling of the meander line phase shifter are reduced by chamfering appropriately. Combined with the electrically tunable LC material, the miniaturised phase shifter achieves 146° phase shift and 122.7°/dB frequency-dependent figure-of-merit. Utilising in series phase shifters, power dividers and in parallel patches, the proposed antenna features compact configuration 41° continuous wide beam scanning range from forward to backward at the satellite communication band 12.5 GHz. At the same time, it maintains satisfactory reflection coefficient and impedance bandwidth at each angle. Finally, the measurements validate the scanning of the beam by electrically tuning the phase shift between the radiating elements.


    1. 1)
      • 1. Varlamos, P.K., Capsalis, C.N.: ‘Electronic beam steering using switched parasitic smart antenna arrays’, J. Electromagn. Waves Appl., 2012, 16, (7), pp. 927928.
    2. 2)
      • 2. Cui, L., Wu, W., Fang, D.F.: ‘Printed frequency beam-scanning antenna with flat gain and low sidelobe levels’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 292295.
    3. 3)
      • 3. Apostolov, P.: ‘Three-element broadband narrow beam without side lobes array antenna’, IET Microw. Antennas Propag., 2016, 10, (11), pp. 12121217.
    4. 4)
      • 4. Keizer, W.P.M.N.: ‘Synthesis of scan- and frequency-invariant low-sidelobe tapers for planar array antennas’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 37033707.
    5. 5)
      • 5. Kodera, T., Caloz, C.: ‘Dual-band full-space scanning leaky-wave antenna based on ferrite-loaded open waveguide’, IEEE Antennas Wirel. Propag. Lett., 2009, 8, pp. 12021205.
    6. 6)
      • 6. Abielmona, S., Nguyen, H.V., Caloz, C.: ‘Analog direction of arrival estimation using an electronically-scanned CRLH leaky-wave antenna’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp. 14081412.
    7. 7)
      • 7. Perez-Palomino, G., Encinar, J.A., Barba, M., et al: ‘Design and evaluation of multi-resonant unit cells based on liquid crystals for reconfigurable reflectarrays’, IET Microw. Antennas Propag., 2012, 6, (3), pp. 348354.
    8. 8)
      • 8. Bildik, S., Dieter, S., Fritzsch, C.: ‘Reconfigurable folded reflect array antenna based upon liquid crystal technology’, IEEE Trans. Antennas Propag., 2015, 63, (1), pp. 122132.
    9. 9)
      • 9. Roig, M., Maasch, M., Damm, C., et al: ‘Dynamic beam steering properties of an electrically tuned liquid crystal based CRLH leaky wave antenna’. Proc. Int. Conf. Advanced Electromagnetic Materials in Microwave and Optics (METAMATERIALS), Lyngby, Denmark, August 2014, pp. 253255.
    10. 10)
      • 10. Che, B.J., Jin, T., Erni, D., et al: ‘Electrically controllable composite right/left-handed leaky-wave antenna using liquid crystals in PCB technology’, IEEE Trans. Compon. Packag. Manuf. Technol., 2017, 7, (8), pp. 13311342.
    11. 11)
      • 11. Ma, S., Yang, G.H., Erni, D., et al: ‘Liquid crystal leaky-wave antennas with dispersion sensitivity enhancement’, IEEE Trans. Compon. Packag. Manuf. Technol., 2017, 7, (5), pp. 792801.
    12. 12)
      • 12. Ogurtsov, S., Koziel, S.: ‘Systematic approach to sidelobe reduction in linear antenna arrays through corporate-feed-controlled excitation’, IET Microw. Antennas Propag., 2016, 11, (6), pp. 779786.
    13. 13)
      • 13. Hao, Z.C., He, M., Hong, W.: ‘Design of a millimeter-wave high angle selectivity shaped-beam conformal array antenna using hybrid genetic/space mapping method’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 12081212.
    14. 14)
      • 14. Zhang, T., Li, L., Zhao, D., et al: ‘High-gain low-cost broadband 60 GHz differential integrated patch array antennas with wire-bonding packaging and on-board compensation network’, IET Microw. Antennas Propag., 2017, 11, (7), pp. 971975.
    15. 15)
      • 15. Sabapathy, T., Jusoh, M., Ahmad, R.B., et al: ‘A ground-plane-truncated, broadly steerable Yagi-Uda patch array antenna’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 10691072.
    16. 16)
      • 16. Karabey, O.H., Gaebler, A., Strunck, S., et al: ‘A 2-D electronically steered phased-array antenna with 2 × 2 elements in LC display technology’, IEEE Trans. Microw. Theory Tech., 2012, 60, (5), pp. 12971306.
    17. 17)
      • 17. Deo, P., Mirshekar-Syahkal, D., Seddon, L., et al: ‘Development of 60 GHz phased antenna arrays using liquid crystal phase-shifters’. 4th Annual Seminar on Passive RF and Microwave Components, Birmingham, UK, March 2013, pp. 14.
    18. 18)
      • 18. Deo, P., Mirshekar-Syahkal, D.: ‘60 GHz beam-steering slotted patch antenna array using liquid crystal phase-shifters’. Proc. of the 2012 IEEE Int. Symp. on Antennas and Propagation, Chicago, USA, July 2012, pp. 12.
    19. 19)
      • 19. Chakraborty, S., Yang, Y., Zhu, X., et al: ‘A broadside-coupled meander-line resonator in 0.13-μm SiGe technology for millimeter-wave application’, IEEE Electron Device Lett., 2016, 37, (3), pp. 329332.
    20. 20)
      • 20. Zhong, Y., Yang, Y., Zhu, X., et al: ‘An on-chip bandpass filter using a broadside-coupled meander line resonator with a defected-ground structure’, IEEE Electron Device Lett., 2017, 38, (5), pp. 626629.
    21. 21)
      • 21. Muller, S., Scheele, P., Weil, C., et al: ‘Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals’. IEEE MTT-S Int. Microwave Symp. Digest, Fort Worth, USA, June 2004, pp. 11531156.
    22. 22)
      • 22. Bulja, S., Mirshekar-Syahkal, D.: ‘Meander line millimetre-wave liquid crystal based phase shifter’, Electron. Lett., 2010, 46, (11), pp. 769771.
    23. 23)
      • 23. Farahbakhsh, A., Zarifi, D., Zaman, A.U.: ‘60-GHz groove gap waveguide based wideband H-plane power dividers and transitions: for use in high-gain slot array antenna’, IEEE Trans. Microw. Theory Tech., 2017, 65, (11), pp. 41114121.

Related content

This is a required field
Please enter a valid email address