access icon free Ultrathin design and implementation of planar and conformal polarisation rotating frequency selective surface based on SIW technology

The design of novel ultra-thin polarisation rotating frequency selective surface based on substrate integrated waveguide (SIW) technology has been presented. The primary function of the structure is to select the linear polarisation from the impinging electromagnetic wave on it and to rotate the wave into the 90° counter-clockwise direction in the given frequency band. The proposed array consists of periodic Y-shaped slot elements surrounded by SIW cavities. The structure shows a relative bandwidth of 8% with impedance matching better than −10 dB and a very good insertion loss of 0.3 dB. It also offers co-polarisation below −20 dB in the passband. The proposed structure is very thin (0.055λ 0) compared to the existing SIW-based frequency selective polarising rotators. Also, the conformal analysis of the proposed structure has been carried to study its behaviour for real-time applications when used on curved surfaces. Finally, to prove the efficacy of proposed structure, a prototype has fabricated and measured its performance. A very good agreement is observed between the experimental and simulated results.

Inspec keywords: slot antennas; conformal antennas; planar antennas; substrate integrated waveguides; electromagnetic wave polarisation; frequency selective surfaces

Other keywords: substrate integrated waveguide; SIW technology; periodic Y-shaped slot elements; counter-clockwise direction; linear polarisation; planar polarisation rotating frequency selective surface; electromagnetic wave; ultrathin design; conformal polarisation rotating frequency selective surface; ultra-thin polarisation rotating frequency selective surface; loss 0.3 dB

Subjects: Single antennas; Microwave materials and structures; Waveguides and microwave transmission lines

References

    1. 1)
      • 11. Yang, W., Tam, K.W., Choi, W.W., et al: ‘Novel polarization rotation technique based on an artificial magnetic conductor and Its application in a Low-profile circular polarization antenna’, IEEE Trans. Antennas Propag., 2014, 62, (12), pp. 62066216.
    2. 2)
      • 26. Akbari, M., Farahani, M., Sebak, A.R., et al: ‘Ka-band linear to circular polarization converter based on multilayer slab with broadband performance’, IEEE Access, 2017, 5, pp. 1792717937.
    3. 3)
      • 8. Luo, G.Q., Hong, W., Hao, Z.-C., et al: ‘Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology’, IEEE Trans. Antennas Propag., 2005, 53, (12), pp. 40354043.
    4. 4)
      • 9. Qi, N.N., Gong, S.X., Zhang, Y.J., et al: ‘Reducing bandwidth of FSS using substrate-integrated waveguide technology’, J. Electromag. Waves Appl., 2008, 22, (14), pp. 20872096.
    5. 5)
      • 20. Zhou, H., Hong, W., Tian, L., et al: ‘A polarization-rotating SIW reflective surface with two sharp band edges’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 130134.
    6. 6)
      • 23. Khan, M.I., Tahir, F.A.: ‘An angularly stable dual-broadband anisotropic cross polarization conversion metasurface’, J. Appl. Phys., 2017, 122, p. 053103.
    7. 7)
      • 19. Yu, Z., Xiang, S.Z., Feng, Y.J.: ‘Frequency-selective microwave polarization rotator using substrate-integrated waveguide cavities’, Chin. Phys. B, 2014, 23, (3), p. 034101.
    8. 8)
      • 22. Saikia, M., Ghosh, S., Srivastava, K.V.: ‘Design and analysis of ultrathin polarization rotating frequency selective surface using V-shaped slots’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 20222025.
    9. 9)
      • 5. Liu, C.H., Behdad, N.: ‘Investigating the impact of microwave breakdown on the responses of high-power microwave metamaterials’, IEEE Trans. Plasma Sci., 2013, 41, (10), pp. 29923000.
    10. 10)
      • 16. Zhu, X.C., Hong, W., Wu., K., et al: ‘Design of a bandwidth-enhanced polarization rotating frequency selective surface’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 940944.
    11. 11)
      • 13. Yang, W., Tam, K.W., Choi, W.W., et al: ‘Polarisation rotation reflective surface based on artificial magnetic conductor and its application’, Electr. Lett., 2014, 50, (21), pp. 15001502.
    12. 12)
      • 4. Munk, B.A., Luebbers, R., Mentzer, C.A.: ‘Breakdown of periodic surfaces at microwave frequencies’. ElectroScience Laboratory, Department of Electrical & Computer Engineering, Ohio State University, Columbus, OH, Technical Report, 1971, pp. 29892991.
    13. 13)
      • 25. Jia, Y., Liu, Y., Guo, Y.J., et al: ‘A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction’, IEEE Trans. Antennas Propag., 2017, 65, (6), pp. 32913295.
    14. 14)
      • 12. Zhu, X.C., Hong, W., Wu., K., et al: ‘A novel reflective surface with polarization rotation characteristic’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 968971.
    15. 15)
      • 2. Narayan, S., Sangeetha, B., Jah, R.M.: ‘Frequency selective surfaces based high performance microstrip antenna’ (Springer, Bangalore, India, 2016).
    16. 16)
      • 10. Luo, G.Q., Hong, W., Tang, H.J., et al: ‘Dualband frequency-selective surfaces using substrate-integrated waveguide technology’, IET Microw. Antennas Propag., 2007, 1, (2), pp. 408413.
    17. 17)
      • 21. Li, L., Li, Y., Wu, Z., et al: ‘Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces’, Proc. IEEE, 2015, 103, (7), pp. 10571070.
    18. 18)
      • 6. Zhang, Y.L., Hong, W., Wu, K., et al: ‘Novel substrate integrated waveguide cavity filter with defected ground structure’, IEEE Trans. Microw. Theory Technol., 2005, 53, (4), pp. 12801287.
    19. 19)
      • 7. Deslandes, D., Wu, K.: ‘Single-substrate integration technique of planar circuits and waveguide filters’, IEEE Trans. Microw. Theory Technol., 2003, 51, (2), pp. 593596.
    20. 20)
      • 27. Bozzi, M., Georgiadis, A., Wu, K.: ‘Review of substrate-integrated waveguide circuits and antennas’, IET Microw. Antennas Propag., 2011, 5, (8), pp. 909920.
    21. 21)
      • 18. Zhong, T., Zhang, H., Wu, R., et al: ‘A frequency selective surface with polarization rotation based on substrate integrated waveguide’, Prog. Electromag. Res. Lett., 2016, 60, pp. 121125.
    22. 22)
      • 28. Kesavan, A., Karimian, R., Denidni, T.A.: ‘A novel wideband frequency selective surface for millimeter-wave applications’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 17111714.
    23. 23)
      • 24. Momeni Hasan Abadi, S.M.A., Behdad, N.: ‘Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces’, IEEE Trans. Antennas Propag., 2016, 64, (2), pp. 525534.
    24. 24)
      • 15. Roy, J.E., Shafai, L.: ‘Reciprocal circular-polarization-selective surface’, IEEE Antennas Propag. Mag., 1996, 38, (6), pp. 1833.
    25. 25)
      • 14. Winkler, S.A., Hong, W., Bozzi, M., et al: ‘Polarization rotating frequency selective surface based on substrate integrated waveguide technology’, IEEE Trans. Antennas Propag., 2010, 58, (4), pp. 12021213.
    26. 26)
      • 1. Munk, B.A.: ‘Frequency selective surfaces: theory and design’ (Wiley, New York, NY, USA, 2000).
    27. 27)
      • 17. Mollaei, M.S.M.: ‘Narrowband configurable polarization rotator using frequency selective surface based on circular substrate-integrated waveguide cavity’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 19231926.
    28. 28)
      • 29. Harringto, R.F.: ‘Some theorems and concepts. Time hormonic electromagnetic fields’ (Wiley, New York, NY, USA, 1961), pp. 106110.
    29. 29)
      • 3. Nair, R.U., Jha, R.M.: ‘Electromagnetic design and performance analysis of airborne radomes: trends and perspectives [antenna applications corner’, IEEE Antennas Propag. Mag., 2014, 56, (4), pp. 276298.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0996
Loading

Related content

content/journals/10.1049/iet-map.2017.0996
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading