Compact planar quasi-Yagi antenna with band-notched characteristic for WLAN and DSRC for ultra-wideband applications

Compact planar quasi-Yagi antenna with band-notched characteristic for WLAN and DSRC for ultra-wideband applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A compact planar quasi-Yagi antenna with a wideband microstrip-to-slotline transition and a modified bow-tie driver is designed with an enhanced bandwidth for precise indoor positioning applications. A compact interdigital capacitor loaded loop resonator with a high quality factor is placed inside the ring resonator at the end of the antenna's slot to realise band-notched characteristics over a frequency range of 5.1–6.3 GHz, thus avoiding interference from wireless local area networks (WLANs) and dedicated short-range communications (DSRCs). Measured results show that the proposed antenna obtains a relative impedance bandwidth, determined by the voltage standing wave ratio <2, higher than 122.6% (3.0–12.5 GHz) and a gain of 4.9–7.8 dBi outside of the stop band.


    1. 1)
      • 1. Bourqui, J., Okoniewski, M., Fear, E.C.: ‘Balanced antipodal vivaldi antenna with dielectric director for nearfield microwave imaging’, IEEE Trans. Antennas Propag., 2010, 58, (7), pp. 23182326.
    2. 2)
      • 2. Uehara, K., Miyashita, K., Matsume, K.I., et al: ‘Lens-coupled imaging arrays for the millimeter and submillimeter wave regions’, IEEE Trans. Microw. Theory Tech., 1992, 40, (5), pp. 806811.
    3. 3)
      • 3. Azim, R., Aldhaheri, R.W., Sheikh, M.M., et al: ‘An effective technique based on off-set fed patch to enhance the bandwidth of microstrip planar antenna’, Microw. Opt. Technol. Lett., 2016, 58, (5), pp. 12211226.
    4. 4)
      • 4. Azim, R., Islam, M.T., Misran, N.: ‘Design of a planar UWB antenna with new band enhancement technique’, Appl. Comput. Electromagn., 2011, 26, (10), pp. 856862.
    5. 5)
      • 5. Fei, P., Jiao, Y.C., Hu, W., et al: ‘A miniaturized antipodal vivaldi antenna with improved radiation characteristics’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, (1), pp. 127130.
    6. 6)
      • 6. Cho, Y.J., Kim, K.H., Choi, D.H., et al: ‘A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics’, IEEE Trans. Antennas Propag., 2006, 54, (5), pp. 14531460.
    7. 7)
      • 7. Jiang, K., Guo, Q.G., Huang, K.M.: ‘Design of a wideband quasi-yagi microstrip antenna with bowtie active elements’. Int. Conf. on Microwave and Millimeter Wave Technology, 2010, pp. 11221124.
    8. 8)
      • 8. Sor, J., Deal, W.R., Qian, Y., et al: ‘A broadband quasi-yagi antenna array’, 29th European Microwave Conf., Munich, Germany, 1999, pp. 255258.
    9. 9)
      • 9. Nikolic, N., Weily, A.R.: ‘Compact E-band planar quasi-yagi antenna with folded dipole driver’, IET Microw. Antennas Propag., 2010, 4, (11), p. 1728.
    10. 10)
      • 10. Zhang, X., Lin, S., Huang, G., et al: ‘Research on broadband and high-gain quasi-yagi antenna and array’. Int. Conf. Control, Automation and Systems Engineering, Shanghai, 2011, pp. 14.
    11. 11)
      • 11. Zhao, T.H., Xiong, Y., Yu, X., et al: ‘A broadband planar quasi-yagi antenna with a modified bow-tie driver for multi-band 3G/4G applications’, Prog. Electromagn. Res. C, 2017, 71, (1), pp. 5967.
    12. 12)
      • 12. Zhang, S., Tang, Z., Yin, Y.: ‘Wideband planar printed quasi-yagi antenna with band-notched characteristic’, Prog. Electromagn. Res., 2014, 48, (7), pp. 137143.
    13. 13)
      • 13. Ta, S.X., Han, J.J., Choo, H., et al: ‘A wideband double dipole quasi-yagi antenna using a microstrip-slotline transition feed’. IEEE Int. Workshop on Antenna Technology, 2012, pp. 8487.
    14. 14)
      • 14. Yang, D., Qu, J., Zhao, Z., et al: ‘Planar quasi-yagi antenna with band rejection based on dual dipole structure for UWB’, IET Microw. Antennas Propag., 2016, 10, (15), pp. 17081714.
    15. 15)
      • 15. Shi, X., Wang, H., Liu, F., et al: ‘Wideband and compact quasi-yagi antenna with bowtie-shaped drivers’, Electron. Lett., 2016, 49, (20), pp. 12621264.
    16. 16)
      • 16. Feng, B., Li, S., An, W., et al: ‘U-shaped bow-tie magneto-electric dipole antenna with a modified horned reflector for ultra-wideband applications’, IET Microw. Antennas Propag., 2014, 8, (12), pp. 990998.
    17. 17)
      • 17. Zhu, F., Gao, S., Ho, A.T.S., et al: ‘Miniaturized tapered slot antenna with signal rejection in 5-6-GHz band using a balun’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, (9), pp. 507510.
    18. 18)
      • 18. Zhu, F., Gao, S., Ho, A.T.S., et al: ‘Dual band-notched tapered slot antenna using λ/4 band-stop filters’, IET Microw. Antennas Propag., 2012, 6, (15), pp. 16651673.
    19. 19)
      • 19. Fallahi, R., Kalteh, A.A., Roozbahani, M.G.: ‘A novel UWB elliptical slot antenna with band-notched characteristics’, Prog. Electromagn. Res., 2008, 82, (1), pp. 127136.
    20. 20)
      • 20. Lin, C.C., Jin, P., Ziolkowski, R.W.: ‘Single, dual and tri-band-notched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 102109.
    21. 21)
      • 21. Azim, R., Islam, M.T.: ‘Compact planar UWB antenna with band notch characteristics for WLAN and DSRC’, Prog. Electromagn. Res., 2013, 133, (34), pp. 391406.
    22. 22)
      • 22. Tang, M., Member, S., Wang, H., et al: ‘Compact planar ultrawideband antennas with continuously tuneable, independent band-notched filters’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 32923301.
    23. 23)
      • 23. Pendry, J.B., Holden, A.J., Robbins, D.J., et al: ‘Magnetism from conductors, and enhanced non-linear phenomena’, IEEE Trans. Microwave Theory Tech., 1999, 47, (11), pp. 20752084.
    24. 24)
      • 24. Bourqui, J., Okoniewski, M., Fear, E.C.: ‘Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging’, IEEE Trans. Antennas Propag., 2010, 58, (7), pp. 23182326.
    25. 25)
      • 25. Alley, G.D.: ‘Interdigital capacitors and their application to lumped-element microwave integrated circuits’, IEEE Trans. Microwave Theory Tech., 1970, 18, (12), pp. 10281033.

Related content

This is a required field
Please enter a valid email address