Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dual-layer partially reflective surface antennas based on extended size unit cells for 60 GHz band WLAN/WPAN

In this study, planar dual-layer partially reflective surface, also known as frequency selective surface (FSS), antennas have been presented for 60 GHz band (57.24–65.88 GHz) wireless local area network (WLAN) and wireless personal area network (WPAN) applications. The FSS is excited through a microstrip patch antenna array of two elements designed at 63.72 GHz with return loss (S11) bandwidth and gain of 5.55 GHz and 13.2 dBi, respectively. Both the FSS unit cell and the feeding patch elements are set to be the same and they are designed based on the patch antenna size improvement method to convince the fabrication limitations imposed by the conventional printed circuit board etching process. Then three double layers FSS antennas have been designed with 2-elements, 12-elements and 24-elements in each FSS layer and measured gains of 15.6, 19.1 and 19.75 dBi, respectively, are achieved. It has also been found that when more layers and number of FSS elements are employed to improve the antenna gain, the overall S11 and gain bandwidth is reduced. In all the cases the measured results agreed well with the simulated results.

References

    1. 1)
      • 9. Verma, L., Fakharzadeh, M., Choi, S.: ‘Wifi on steroids: 802.11 ac and 802.11 ad.’, IEEE Wirel. Commun., 2013, 20, (6), pp. 3035.
    2. 2)
      • 18. Adane, A., Gallée, F., Person, C.: ‘Bandwidth improvements of 60GHz micromachining patch antenna using gap coupled U – microstrip feeder’. 2010 Proc. of the Fourth European Conf. Antennas and Propagation (EuCAP), April 2010, pp. 15.
    3. 3)
      • 13. Al Henawy, M., Richter, M.D., Schneider, M.: ‘New thermoplastic polymer substrate for microstrip antennas at 60 GHz’. German Microwave Conf., 2010, March 2010, pp. 58.
    4. 4)
      • 6. Qasim, A.M., Rahman, T.A.: ‘A compact & high gain series array planar antenna for 60-GHz WPAN applications’. 2010 IEEE Asia-Pacific Conf. Applied Electromagnetics (APACE), November 2010, pp. 15.
    5. 5)
      • 4. Kärnfelt, C., Hallbjörner, P., Zirath, H., et al: ‘High gain active microstrip antenna for 60-GHz WLAN/WPAN applications’, IEEE Trans. Microw. Theory Tech., 2006, 54, (6), pp. 25932603.
    6. 6)
      • 15. Cui, H., Zhang, T., Sun, Y., et al: ‘Implementation of CPW-feed patch/slot antennas for 60 GHz system applications’. 2010 Int. Conf. Microwave and Millimeter Wave Technology (ICMMT), May 2010, pp. 18831886.
    7. 7)
      • 16. Liu, H., He, Y., Wong, H.: ‘Printed U-slot patch antenna for 60 GHz applications’. 2013 IEEE Int. Workshop on Electromagnetics (iWEM), August 2013, pp. 153155.
    8. 8)
      • 7. Vettikalladi, H., Lafond, O., Himdi, M.: ‘High-efficient and high-gain superstrate antenna for 60-GHz indoor communication’, IEEE Antennas Wirel. Propag. Lett., 2009, 8, pp. 14221425.
    9. 9)
      • 29. Chiu, C.H.: ‘Tatung company’: ‘Partially reflective surface antenna’, U.S. Patent 7,319,429. 2008.
    10. 10)
      • 5. Biglarbegian, B., Fakharzadeh, M., Busuioc, D., et al: ‘Optimized microstrip antenna arrays for emerging millimeter-wave wireless applications’, IEEE Trans. Antennas Propag., 2011, 59, (5), pp. 17421747.
    11. 11)
      • 10. Pan, H. K., Horine, B.D., Ruberto, M., et al: ‘Mm-wave phased array antenna and system integration on semi-flex packaging’. 2011 IEEE Int. Symp. Antennas and Propagation (APSURSI), July 2011, pp. 20592062.
    12. 12)
      • 1. Rabbani, M.S., Ghafouri-Shiraz, H.: ‘Improvement of microstrip patch antenna gain and bandwidth at 60 GHz and X bands for wireless applications’, IET Microw. Antennas Propag., 2016, 10, (11), pp. 11671173.
    13. 13)
      • 19. Luk, K.M., Li, M.: ‘Magneto-electric dipole antennas for millimeter-wave applications’. 2013 Asia-Pacific Microwave Conf. APMC, November 2013, pp. 304306.
    14. 14)
      • 23. Coulibaly, Y., Nedil, M., Talbi, L., et al: ‘Design of high gain and broadband antennas at 60 GHz for underground communications systems’, Int. J. Antennas Propag., 2012, 2012, pp. 17.
    15. 15)
      • 17. Gao, J., Li, K., Harada, H.: ‘60 GHz wideband antenna with air filled stacked patch structure’. 2011 IEEE Int. Symp. Antennas and Propagation (APSURSI), July 2011.
    16. 16)
      • 25. Bancroft, R.: ‘Microstrip and printed antenna design’ (The Institution of Engineering and Technology, 2009).
    17. 17)
      • 27. Rabbani, M.S., Ghafouri-Shiraz, H.: ‘Fabrication tolerance and gain improvements of microstrip patch antenna at terahertz frequencies’, Microw. Opt. Technol. Lett., 2016, 58, (8), pp. 18191824.
    18. 18)
      • 14. Wang, L., Guo, Y.X., Sheng, W.X.: ‘Wideband high-gain 60-GHz LTCC L-probe patch antenna array with a soft surface’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 18021809.
    19. 19)
      • 12. Lu, B., Luo, J., Zhang, L., et al: ‘A patch antenna array for 60-GHz WPAN based on polypropylene composite substrate’. 2014 IEEE Int. Conf. Electron Devices and Solid-State Circuits (EDSSC), June 2014, pp. 12.
    20. 20)
      • 22. Dheyab, E., Qasem, N.: ‘Design and optimization of rectangular microstrip patch array antenna using frequency selective surfaces for 60 GHz’, Int. J. Appl. Eng. Res., 2016, 11, (7), pp. 46794687.
    21. 21)
      • 8. Artemenko, A., Maltsev, A., Mozharovskiy, A., et al: ‘Millimeter-wave electronically steerable integrated lens antennas for WLAN/WPAN applications’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 16651671.
    22. 22)
      • 26. Rabbani, M.S., Ghafouri-Shiraz, H.: ‘Size improvement of rectangular microstrip patch antenna at MM-wave and terahertz frequencies’, Microw. Opt. Technol. Lett., 2015, 57, (11), pp. 25852589.
    23. 23)
      • 24. Jha, K.R., Singh, G.: ‘Design of highly directive cavity type terahertz antenna for wireless communication’, Opt. Commun., 2011, 284, (20), pp. 49965002.
    24. 24)
      • 21. Hosseini, A., Capolino, F., De Flaviis, F.: ‘Gain enhancement of a V-band antenna using a Fabry-Pérot cavity with a self-sustained all-metal cap with FSS’. IEEE Trans. Antennas Propag., 2015, 63, (3), pp. 909921.
    25. 25)
      • 20. Ullah, U., Mahyuddin, N., Arifin, Z., et al: ‘Antenna in LTCC technologies: a review and the current state of the art’. IEEE Antennas Propag. Mag., 2015, 57, (2), pp. 241260, doi: 10.1109/MAP.2015.2414668.
    26. 26)
      • 3. Murugan, D., Madhan, M.G., Piramasubramanian, S.: ‘Design and performance prediction of 10GHz micro strip array antenna structures’. 2012 Third Int. Conf. Computing Communication & Networking Technologies (ICCCNT), July 2012, pp. 15.
    27. 27)
      • 11. Nakajima, M., Sudo, K., Fujii, H., et al: ‘A wideband 60 GHz chip antenna’. 2012 Asia-Pacific Microwave Conf. (APMC), December 2012, pp. 328330, doi: 10.1109/APMC.2012.6421587.
    28. 28)
      • 28. Jha, K.R., Singh, G.: ‘Analysis of the effect of ground plane size on the performance of a probe-fed cavity resonator microstrip antenna’, Wirel. Pers. Commun., 2013, 71, (2), pp. 15111521.
    29. 29)
      • 30. Feresidis, A.P., Vardaxoglou, J.C.: ‘High gain planar antenna using optimised partially reflective surfaces’, IEE Proc., Microw. Antennas Propag., 2001, 148, (6), pp. 345350.
    30. 30)
      • 2. Moraitis, N., Constantinou, P.: ‘Indoor channel measurements and characterization at 60 GHz for wireless local area network applications’, IEEE Trans. Antennas Propag., 2004, 52, (12), pp. 31803189.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0957
Loading

Related content

content/journals/10.1049/iet-map.2017.0957
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address