http://iet.metastore.ingenta.com
1887

Wideband printed monopole antenna for application in wireless communication systems

Wideband printed monopole antenna for application in wireless communication systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Empirical results of an electrically small printed monopole antenna are described with a fractional bandwidth of 185% (115 MHz to 2.90 GHz) for return-loss better than 10 dB, peak gain and radiation efficiency at 1.45 GHz of 2.35 dBi and 78.8%, respectively. The antenna geometry can be approximated to a back-to-back triangular shaped patch structure that is excited through a common feed-line with a meander-line T-shape divider. The truncated ground-plane includes a central stub located underneath the feed-line. The impedance bandwidth of the antenna is enhanced with the inclusion of meander-line slots in the patch and four double split-ring resonators on the underside of the radiating patches. The antenna radiates approximately omni-directionally to provide coverage over a large part of very high frequency, the whole of ultrahigh frequency, the whole of L-band and some parts of S-band. The antenna has dimensions of 48.32 × 43.72 × 0.8 mm3, which is corresponding to the electrical size of 0.235 λ 0 × 0.211 λ 0 × 0.003 λ 0, where λ 0 is the free-space wavelength at 1.45 GHz. The proposed low-profile low-cost antenna is suitable for application in wideband wireless communications systems.

References

    1. 1)
      • 1. Balanis, C.A., Theory, A.: ‘Analysis and design’ (Wiley, New York, NY, USA, 2005).
    2. 2)
      • 2. Ramachandran, A., Mathew, S., Rajan, V., et al: ‘A compact triband quad-element MIMO antenna using SRR ring for high isolation’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 14091412.
    3. 3)
      • 3. An, W., Shen, Z., Wang, J.: ‘Compact low-profile dual-band tag antenna for indoor positioning systems’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 400403.
    4. 4)
      • 4. Yadav, S., Gautam, A.K., Kanaujia, B.K., et al: ‘Design of band-rejected UWB planar antenna with integrated bluetooth band’, IET Microw. Antennas Propag., 2016, 10, (14), pp. 15281533.
    5. 5)
      • 5. Yang, Y., Chu, Q., Mao, C.: ‘Multiband MIMO antenna for GSM, DCS, and LTE indoor applications’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 15731576.
    6. 6)
      • 6. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R.A., et al: ‘Hexa-band planar antenna with asymmetric fork-shaped radiators for multiband and broadband communication applications’, IET Microw. Antennas Propag., 2016, 10, (5), pp. 471478.
    7. 7)
      • 7. Li, W., Xia, Z., You, B., et al: ‘Dual-polarized H-shaped printed slot antenna’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 14841487.
    8. 8)
      • 8. Ding, K., Gao, C., Yu, T., et al: ‘Wideband CP slot antenna with backed FSS reflector’, IET Microw. Antennas Propag., 2017, 11, (7), pp. 10451050.
    9. 9)
      • 9. Lee, C–T, Su, S.-W., Chen, S.-C., et al: ‘low-cost, direct-fed slot antenna built in metal cover of notebook computer for 2.4-/5.2-/5.8-GHz WLAN operation’, IEEE Trans. Antennas Propag., 2017, 65, (5), pp. 26772682.
    10. 10)
      • 10. Dong, Y., Choi, J., Itoh, T.: ‘Folded strip/slot antenna with extended bandwidth for WLAN application’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 673676.
    11. 11)
      • 11. Akbarpour, A., Chamaani, S.: ‘Dual-band electrically coupled loop antenna for implant applications’, IET Microw. Antennas Propag., 2017, 11, (7), pp. 10201023.
    12. 12)
      • 12. Liu, Y., Liu, F., Yang, D., et al: ‘Type of active impulse noise suppressing method based on double-loop antennas in very low frequency/ultra-low frequency coupling communications’, IET Microw. Antennas Propag., 2016, 11, (6), pp. 867873.
    13. 13)
      • 13. Sadeghi, P., Nourinia, J., Ghobadi, C.: ‘Square slot antenna with two spiral slots loaded for broadband circular polarisation’, Electron. Lett., 2016, 52, (10), pp. 787788.
    14. 14)
      • 14. Buckley, J.L., McCarthy, K.G., Loizou, L., et al: ‘A dual-ISM-band antenna of small size using a spiral structure with parasitic element’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 630633.
    15. 15)
      • 15. Sharma, C., Vishwakarma, D.K.: ‘Miniaturization of spiral antenna based on fibonacci sequence using modified Koch curve’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 932935.
    16. 16)
      • 16. Yang, F., Rahmat-Samii, Y.: ‘Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications’, IEEE Trans. Antennas Propag., 2003, 51, (10), pp. 26912703.
    17. 17)
      • 17. Vallecchi, A., de Luis, J.R., Capolino, F., et al: ‘Low profile fully planar folded dipole antenna on a high impedance surface’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 5162.
    18. 18)
      • 18. Bell, J.M., Iskander, M.F.: ‘A low-profile Archimedean spiral antenna using an EBG ground plane’, IEEE Antennas Wirel. Propag. Lett., 2004, 3, (1), pp. 223226.
    19. 19)
      • 19. James, J.R., Hall, P.S.: ‘Handbook of microstrip antennas’ (Peter Peregrinus, London, U.K., 1989).
    20. 20)
      • 20. Luk, K.M., Mak, C.L., Chow, Y., et al: ‘Broadband microstrip patch antenna’, Electron. Lett., 1998, 34, pp. 14421443.
    21. 21)
      • 21. da Costa, K.Q., Dmitriev, V., Nascimento, D.C., et al: ‘Broadband L-probe fed patch antenna combined with passive loop elements’, IEEE Antennas Wirel. Propag. Lett., 2007, 6, pp. 100102.
    22. 22)
      • 22. Kasabegoudar, V.G., Vinoy, K.J.: ‘Coplanar capacitively coupled probe fed microstrip antennas for wideband applications’, IEEE Trans. Antennas Propag., 2010, 58, (10), pp. 31313138.
    23. 23)
      • 23. Wong, K.L., Tung, H.C.: ‘An inverted U-shaped patch antenna for compact operation’, IEEE Trans. Antennas Propag., 2003, 51, (7), pp. 16471648.
    24. 24)
      • 24. Namin, F., Spence, T.G., Werner, D.H., et al: ‘Broadband, miniaturized stacked-patch antennas for L-band operation based on magneto-dielectric substrates’, IEEE Trans. Antennas Propag., 2010, 58, (9), pp. 28172822.
    25. 25)
      • 25. Chair, R., Mak, C.L., Lee, K.F., et al: ‘Miniature wide-band half U-slot and half E-shaped patch antennas’, IEEE Trans. Antennas Propag., 2005, 53, (8), pp. 26452652.
    26. 26)
      • 26. Chen, Y., Yang, S., Nie, Z.: ‘Bandwidth enhancement method for low profile E-shaped microstrip patch antennas’, IEEE Trans. Antennas Propag., 2010, 58, (7), pp. 24422447.
    27. 27)
      • 27. See, C.H., Abd-Alhameed, R.A., Elmegri, F., et al: ‘Planar monopole antennas for new generation mobile and lower-band UWB applications’, IET Microw. Antennas Propag., 2012, 6, (11), pp. 12071214.
    28. 28)
      • 28. Helszajn, J., James, D.S.: ‘‘Planar triangular resonators with magnetic walls’, IEEE Trans. Microw. Theory Tech., 1978, MTT-26, (2), pp. 95100.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0894
Loading

Related content

content/journals/10.1049/iet-map.2017.0894
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address