Comparative analysis of personal exposure levels induced by long-term evolution 1800 Re-farming and other RF sources in an urban environment

Comparative analysis of personal exposure levels induced by long-term evolution 1800 Re-farming and other RF sources in an urban environment

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Narrowband analysis of real-life up-link (UL) and down-link (DL) trends in personal exposure to recently installed long-term evolution 1800 and other radio frequency sources in typical everyday environments is presented in this work. Results are derived by analysis and post-processing of experimental dataset consisting of 1,677,600 measurement samples, taken at a sampling frequency of 0.25 Hz. The electric field measurements were collected with calibrated personal exposure meters at 90 urban spots, including outdoor and indoor microenvironments. A robust regression from order statistics was applied, enabling the determination of more reliable mean exposure values (V/m) for each wireless and broadcast technology and microenvironment. The exposure ratio for global system for mobile communications (GSM) + long-term evolution (LTE) 1800 (UL) and GSM + LTE 1800 (down link, DL) varied between 0.004 and 0.546% in outdoor environments. The maximal electric field value for the GSM + LTE 900 (DL) was 1.77 V/m, while for GSM + LTE 1800 (DL) this value was 0.644 V/m. The cumulative distribution function of the total radio frequency exposure for the various microenvironments is presented. The research results confirm that exposure levels in an urban environment even after the LTE 1800 Re-farming deployment are far below the International Commission on Non-ionising Radiation Protection reference levels.


    1. 1)
      • 1. Holma, H., Toskala, A.: ‘LTE for UMTS OFDMA and SC-FDMA based radio access’ (Wiley, 2009), available at
    2. 2)
      • 2. ICNIRP, International Commission on Non-Ionizing Radiation Protection: ‘guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)’, Health Phys.., 1998, 74, (4), pp. 494522.
    3. 3)
      • 3. WHO World Health Organization: WHO Research Agenda for Radiofrequency Fields, Geneva, Switzerland, 2010. Available at
    4. 4)
      • 4. Joseph, W., Verloock, L., Tanghe, E., et al: ‘In-situ measurement procedures for temporal RF electromagnetic field exposure of the general public’, Health Phys.., 2009, 96, (5), pp. 529542.
    5. 5)
      • 5. Manassas, A., Boursianis, A., Samaras, T., et al: ‘Continuous electromagnetic radiation monitoring in the environment: analysis of the results in Greece’, Radiat. Prot. Dosim., 2012, 151, (3), pp. 437442, Available at
    6. 6)
      • 6. Joseph, W., Verloock, L.: ‘Influence of mobile phone traffic on general public base station exposure’, Health Phys.., 2010, 99, (5), pp. 631638.
    7. 7)
      • 7. Mahfouz, Z., Gati, A., Lautru, D., et al: ‘Influence of traffic variations on exposure to wireless signals in realistic environments’, Bioelectromagnetics, 2012, 33, pp. 288297.
    8. 8)
      • 8. Mahfouz, Z., Verloock, L., Joseph, W., et al: ‘Comparison of the temporal realistic RF exposure with worst-case estimation in two countries’, Radiat. Prot. Dosim., 2013, 157, (3), pp. 331338.
    9. 9)
      • 9. Miclaus, S., Bechet, P., Gheorghevici, M.: ‘Long-term exposure to mobile communication radiation: an analysis of time-variability of electric field level in GSM900 downlink channels’, Radiat. Prot. Dosim., 2013, 154, (2), pp. 164173.
    10. 10)
      • 10. Chen, H.Y., Wen, S.H.: ‘Human exposure to RF fields from a LTE femtocell in an office’. IEEE Radio Science Meeting (Joint with AP-S Symp.), 2015 USNC-URSI, July 19 2015, pp. 321321.
    11. 11)
      • 11. Colombi, D., Thors, B., Wirén, N., et al: ‘Measurements of downlink power level distributions in LTE networks’. IEEE Int. Conf. Electromagnetics in Advanced Applications (ICEAA), September 9 2013, pp. 98101.
    12. 12)
      • 12. Ibrani, M., Hamiti, E., Ahma, L., et al: ‘Narrowband frequency-selective up-link and down-link evaluation of daily personal-exposure induced by wireless operating networks’, Wirel. Netw., 2017, 23, (4), pp. 11911200.
    13. 13)
      • 13. Joseph, W., Frei, P., Roösli, M., et al: ‘Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe’, Environ. Res., 2010, 110, (7), pp. 658663.
    14. 14)
      • 14. Bolte, J.F., Eikelboom, T.: ‘Personal radiofrequency electromagnetic field measurements in the Netherlands: exposure level and variability for everyday activities, times of day and types of area’, Environ. Int., 2012, 48, pp. 133142.
    15. 15)
      • 15. Vermeeren, G., Markakis, I., Goeminne, F., et al: ‘Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece’, Prog. Biophys. Mol. Biol., 2013, 113, (2), pp. 254263.
    16. 16)
      • 16. Thuróczy, G., Molnár, F., Jánossy, G., et al: ‘Personal RF exposimetry in urban area’, Ann. Telecommun.-Ann. Télécommun., 2008, 63, (1–2), pp. 8796.
    17. 17)
      • 17. Joseph, W., Frei, P., Röösli, M., et al: ‘Between-country comparison of whole-body SAR from personal exposure data in urban areas’, Bioelectromagnetics, 2012, 33, (8), pp. 682694.
    18. 18)
      • 18. Joseph, W., Verloock, L., Goeminne, F., et al: ‘Assessment of RF exposures from emerging wireless communication technologies in different environments’, Health Phys.., 2012, 102, (2), pp. 161172.
    19. 19)
      • 19. Mann, S.: ‘Assessing personal exposures to environmental radiofrequency electromagnetic fields’, C. R. Phys., 2010, 11, (9), pp. 541–555.
    20. 20)
      • 20. de Miguel-Bilbao, S., García, J., Ramos, V., et al: ‘Assessment of human body influence on exposure measurements of electric field in indoor enclosures’, Bioelectromagnetics, 2015, 36, (2), pp. 118132.
    21. 21)
      • 21. Bolte, J.F., van der Zande, G., Kamer, J.: ‘Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields’, Bioelectromagnetics, 2011, 32, (8), pp. 652663.
    22. 22)
      • 22. Vanveerdeghem, P., Van Torre, P., Thielens, A., et al: ‘Compact personal distributed wearable exposimeter’, IEEE Sen. J., 2015, 15, (8), pp. 43934401.
    23. 23)
      • 23. Knafl, U., Lehmann, H., Riederer, M.: ‘Electromagnetic field measurements using personal exposimeters’, Bioelectromagnetics, 2008, 29, (2), pp. 160162.
    24. 24)
      • 24. Neubauer, G., Cecil, S., Giczi, W., et al: ‘Evaluation of the correlation between RF dosimeter reading and real human exposure’. Final Report on the project C2006-07, ARC-IT-0218, 2008, Seibersdorf.
    25. 25)
      • 25. Röösli, M., Frei, P., Mohler, E., et al: ‘Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects’, Bioelectromagnetics, 2008, 29, (6), pp. 471478.
    26. 26)
      • 26. Urbinello, D., Joseph, W., Huss, A., et al: ‘Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits’, Environ. Int., 2014, 68, pp. 4954.
    27. 27)
      • 27. Urbinello, D., Joseph, W., Verloock, L., et al: ‘Temporal trends of radio-frequency electromagnetic field (RF-EMF) exposure in everyday environments across European cities’, Environ. Res., 2014, 134, pp. 134142.
    28. 28)
      • 28. Ibrani, M., Hamiti, E., Ahma, L., et al: ‘Frequency-selective evaluation of personal exposure to electromagnetic fields of wireless communications and broadcast transmitters’, Wirel. Pers. Commun., 2016, 90, (3), pp. 13551367.
    29. 29)
      • 29. Bolte, J.F.: ‘Lessons learnt on biases and uncertainties in personal exposure measurement surveys of radiofrequency electromagnetic fields with exposimeters’, Environ. Int., 2016, 94, pp. 724735.

Related content

This is a required field
Please enter a valid email address