http://iet.metastore.ingenta.com
1887

Coplanar waveguide-fed rose-curve shape UWB monopole antenna with dual-notch characteristics

Coplanar waveguide-fed rose-curve shape UWB monopole antenna with dual-notch characteristics

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new design of a planar ultra-wideband (UWB) monopole antenna with a rose-curve contour shape is proposed. The rose-curve circumference of the monopole is expressed in polar coordinates as: . This function enables a flexible and easy to control layout, which directly affects the antenna's response. The arguments of the function are specified based on a simple deterministic design rule and the outputs of a parametric study. The antenna covers the 3.1–11 GHz band and has an ultra-miniaturised size of 864 mm3 when realised on a RT/Duroid 6010LM substrate of 0.635 mm thickness. To add dual-notch characteristics to the proposed antenna, a complementary dual-band split ring resonator inclusion is etched on the antenna's patch near the feeding line. The inclusion is designed to operate at the two Wi-Fi and ISM frequency bands, 3.5 and 5.8 GHz, respectively. These centre band frequencies are determined using a new hybrid method that utilises the resonant and non-resonant design approaches of metamaterial structures. Simulated and measured return loss values, radiation patterns and gain values for the proposed antennas (with and without notching) are in very good agreements, and demonstrate satisfactory performance.

References

    1. 1)
      • 1. Sever, I., Lo, S., Ma, S-P., et al: ‘A dual-antenna phase-array ultra-wideband CMOS transceiver’, IEEE Commun. Mag., 2006, 44, (8), pp. 102110.
    2. 2)
      • 2. Agee, F.J., Baum, C.E., Prather, W.D., et al: ‘Ultra-wideband transmitter research’, IEEE Trans. Plasma Sci., 1998, 26, (3), pp. 860873.
    3. 3)
      • 3. Hamalainen, M., Hovinen, V., Tesi, R., et al: ‘On the UWB system coexistence with GSM900, UMTS/WCDMA, and GPS’, IEEE J. Sel. Areas Commun., 2002, 20, (9), pp. 17121721.
    4. 4)
      • 4. Novak, M.H., Volakis, J.L.: ‘Ultrawideband antennas for multiband satellite communications at UHF–Ku frequencies’, IEEE Trans. Antennas Propag., 2015, 63, (4), pp. 13341341.
    5. 5)
      • 5. Jofre, L., Broquetas, A., Romeu, J., et al: ‘UWB tomographic radar imaging of penetrable and impenetrable objects’, Proc. IEEE, 2009, 97, (2), pp. 451464.
    6. 6)
      • 6. Wu, Q., Jin, R., Geng, J., et al: ‘Pulse preserving capabilities of printed circular disk monopole antennas with different grounds for the specified input signal forms’, IEEE Trans. Antennas Propag., 2007, 55, (10), pp. 28662873.
    7. 7)
      • 7. Zhao, D., Yang, C., Zhu, M., et al: ‘Design of WLAN/LTE/UWB antenna with improved pattern uniformity using ground-cooperative radiating structure’, IEEE Trans. Antennas Propag., 2016, 64, (1), pp. 271276.
    8. 8)
      • 8. Aissaoui, D., Hacen, N.B., Denidni, T.A.: ‘UWB hexagonal monopole fractal antenna with additional trapezoidal elements’. 2015 IEEE Int. Conf. on Ubiquitous Wireless Broadband (ICUWB), Montreal, Canada, 2015, pp. 14.
    9. 9)
      • 9. Fallahi, H., Atlasbaf, Z.: ‘Study of a class of UWB CPW-fed monopole antenna with fractal elements’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 14841487.
    10. 10)
      • 10. Pourahmadazar, J., Ghobadi, C., Nourinia, J.: ‘Novel modified pythagorean tree fractal monopole antennas for UWB applications’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 484487.
    11. 11)
      • 11. Tripathi, S., Mohan, A., Yadav, S.: ‘Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement’, IET Microw. Antennas Propag., 2014, 8, (15), pp. 14451450.
    12. 12)
      • 12. Gazit, E.: ‘Improved design of the Vivaldi antenna’, IEE Proc. H, Microw. Antennas Propag., 1988, 135, (2), pp. 8992.
    13. 13)
      • 13. Natarajan, R., George, J., Kanagasabai, M., et al: ‘Modified antipodal Vivaldi antenna for ultra-wideband communications’, IET Microw. Antennas Propag., 2016, 10, (4), pp. 401405.
    14. 14)
      • 14. Ebrahimi, E., Kelly, J.R., Hall, P.S.: ‘Integrated wide-narrowband antenna for multi-standard radio’, IEEE Trans. Antennas Propag., 2011, 59, (7), pp. 26282635.
    15. 15)
      • 15. Jiang, D., Xu, Y., Xu, R., et al: ‘Compact dual-band-notched UWB planar monopole antenna with modified CSRR’, Electron. Lett., 2012, 48, (20), pp. 12501252.
    16. 16)
      • 16. Li, L., Zhou, Z.L., Hong, J.S., et al: ‘Compact dual-band-notched UWB planar monopole antenna with modified SRR’, Electron. Lett., 2011, 47, (17), pp. 950951.
    17. 17)
      • 17. Kim, J.Y., Oh, B.C., Kim, N., et al: ‘Triple band-notched UWB antenna based on complementary meander line SRR’, Electron. Lett., 2012, 48, (15), pp. 896897.
    18. 18)
      • 18. Lin, C.C., Jin, P., Ziolkowski, R.W.: ‘Single, dual and tri-band-notched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 102109.
    19. 19)
      • 19. Gil, M., Bonache, J., Garcia-Garcia, J., et al: ‘Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design’, IEEE Trans. Microw. Theory Tech., 2007, 55, (6), pp. 12961304.
    20. 20)
      • 20. Gil, M., Bonache, J., Martin, F.: ‘Synthesis and applications of new left handed microstrip lines with complementary split-ring resonators etched on the signal strip’, IET Microw. Antennas Propag., 2008, 2, (4), pp. 324330.
    21. 21)
      • 21. Niu, J., Zhou, X.: ‘Resonant-type balanced composite right/ left-handed coplanar waveguide structure’, Electron. Lett., 2008, 44, (10), pp. 638639.
    22. 22)
      • 22. Sanz, V., Belenguer, A., Martinez, L., et al: ‘Balanced right/left-handed coplanar waveguide with stub-loaded split-ring resonators’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 193196.
    23. 23)
      • 23. Abu Safia, O., Talbi, L., Hettak, K.: ‘A new type of transmission line-based metamaterial resonator and its implementation in original applications’, IEEE Trans. Magn., 2013, 49, (3), pp. 968973.
    24. 24)
      • 24. Abu Safia, O., Talbi, L., Hettak, K.: ‘Dual-band split-ring resonator using composite right-/left-handed coplanar waveguide transmission line-based elements’. 2014 IEEE 27th Canadian Conf. on Electrical and Computer Engineering (CCECE), Toronto, Canada, 2014, pp. 14.
    25. 25)
      • 25. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley & Sons, Hoboken, 2016, 4th edn.).
    26. 26)
      • 26. Liang, J., Chiau, C.C., Chen, X., et al: ‘Study of a printed circular disc monopole antenna for UWB systems’, IEEE Trans. Antennas Propag., 2005, 53, (11), pp. 35003504.
    27. 27)
      • 27. Nouri, A., Dadashzadeh, G.R.: ‘A compact UWB band-notched printed monopole antenna with defected ground structure’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 11781181.
    28. 28)
      • 28. Angelopoulos, E.S., Anastopoulos, A.Z., Kaklamani, D.I., et al: ‘Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultrawideband applications’, IEEE Antennas Wirel. Propag. Lett., 2006, 5, (1), pp. 294297.
    29. 29)
      • 29. Liang, J., Guo, L., Chiau, C.C., et al: ‘Study of CPW-fed circular disc monopole antenna for ultra wideband applications’, IEE Proc. – Microw. Antennas Propag., 2005, 152, (6), pp. 520526.
    30. 30)
      • 30. Ray, K.P., Ranga, Y.: ‘Ultrawideband printed elliptical monopole antennas’, IEEE Trans. Antennas Propag., 2007, 55, (4), pp. 11891192.
    31. 31)
      • 31. Antoniades, M.A., Eleftheriades, G.V.: ‘A compact multiband monopole antenna with a defected ground plane’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 652655.
    32. 32)
      • 32. Zhang, K., Li, Y., Long, Y.: ‘Band-notched UWB printed monopole antenna with a novel segmented circular patch’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 12091212.
    33. 33)
      • 33. Siddiqui, J.Y., Saha, C., Antar, Y.: ‘Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics’, IEEE Trans. Antennas Propag., 2014, 62, (8), pp. 40154020.
    34. 34)
      • 34. Siddiqui, J.Y., Saha, C., Antar, Y.: ‘Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 100103.
    35. 35)
      • 35. Unnikrishnan, D., Kaddour, D., Tedjini, S., et al: ‘CPW-fed inkjet printed UWB antenna on ABS-PC for integration in molded interconnect devices technology’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 11251128.
    36. 36)
      • 36. Chen, Y.S.: ‘Application of multi-objective fractional factorial design for ultra-wideband antennas with uniform gain and high fidelity’, IET Microw. Antennas Propag., 2015, 9, (15), pp. 16671672.
    37. 37)
      • 37. Rodrigues, E., Lins, H., D'Assunção, A.: ‘Fast and accurate synthesis of electronically reconfigurable annular ring monopole antennas using particle swarm optimisation and artificial bee colony algorithms’, IET Microw. Antennas Propag., 2016, 10, (4), pp. 362369.
    38. 38)
      • 38. Vendik, I.B., Rusakov, A., Kanjanasit, K., et al: ‘Ultrawideband (UWB) planar antenna with single-, dual-, and triple-band notched characteristic based on electric ring resonator’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 15971600.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0852
Loading

Related content

content/journals/10.1049/iet-map.2017.0852
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address