http://iet.metastore.ingenta.com
1887

Design of a tuneable and broadband absorber using a switchable transmissive/reflective FSS

Design of a tuneable and broadband absorber using a switchable transmissive/reflective FSS

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new architecture for designing a tuneable wideband absorber using an active frequency selective surface (AFSS) is presented. The proposed AFSS is composed of 2-D periodic array of two opposite directional anchor-shaped metal strips printed on a dielectric substrate with no metallic screen on the back side, where positive–intrinsic–negative diodes as active components are embedded between each two anchor-shaped strips. Biasing at different voltages to turn ON and OFF the diodes, AFSS structure can react as a switchable surface between transmissive and reflective states. While, the absorber consists of the designed AFSS structure and a metallic back-plane, separated by a foam spacer. By dynamically changing the bias voltage of the diodes, the impedance of the proposed absorber can be adjusted and match with the free space at its resonant frequencies. Doing this, the presented absorber is able to offer a tuneable reflectivity level of less than −10 dB over a wide frequency band from 7 to 13.1 GHz. The detailed design of a switchable transmissive/reflective surface and a tuneable wideband absorber are reported. Both the simulated and measured results have verified the proposed performances. Furthermore, a good agreement between the measurement and simulation results has been obtained.

References

    1. 1)
      • 1. Vinoy, K.J., Jha, R.M.: ‘Radar absorbing materials: from theory to design and characterization’ (Kluwer, Norwell, MA, USA, 1996, 1st edn.).
    2. 2)
      • 2. Gao, M., Abadi, S.M.A.M.H., Behdad, N.: ‘A dual-band, inductively coupled miniaturized-element frequency selective surface with higher order bandpass response’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 37293734.
    3. 3)
      • 3. Gao, M., Abadi, S.M.A.M.H., Behdad, N.: ‘A hybrid miniaturized-element frequency selective surface with a third-order bandpass response’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 708711.
    4. 4)
      • 4. Munk, B.A.: ‘Frequency selective surfaces: theory and design’ (Wiley, New York, NY, USA, 2000, 1st edn.).
    5. 5)
      • 5. Seman, F.C., Cahill, R., Fusco, V.F., et al: ‘Design of a Salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance’, IET Microw. Antennas Propag., 2011, 5, (2), pp. 149156.
    6. 6)
      • 6. Ghosh, S., Srivastava, K.V.: ‘An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 511514.
    7. 7)
      • 7. Kundu, D., Mohan, A., Chakrabarty, A.: ‘Single-layer wideband microwave absorber using an array of crossed dipoles’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 15891592.
    8. 8)
      • 8. Ghosh, S., Bhattacharyya, S., Srivastava, K.V.: ‘Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber’, IET Microw. Antennas Propag., 2016, 10, (8), pp. 850855.
    9. 9)
      • 9. Chaurasiya, D., Ghosh, S., Bhattacharyya, S., et al: ‘Compact multi-band polarisation-insensitive metamaterial absorber’, IET Microw. Antennas Propag., 2016, 10, (1), pp. 94101.
    10. 10)
      • 10. Fante, R.L., Mccormack, M.T.: ‘Reflection properties of the Salisbury screen’, IEEE Trans. Antennas Propag., 1988, 36, (10), pp. 14431454.
    11. 11)
      • 11. Du Toit, L.J.: ‘The design of Jaumann absorbers’, IEEE Antennas Propag. Mag., 1994, 36, (6), pp. 1725.
    12. 12)
      • 12. Kiani, G.I., Ford, K.L., Olsson, L.G., et al: ‘Switchable frequency selective surface for the reconfigurable electromagnetic architecture of buildings’, IEEE Trans. Antennas Propag., 2010, 58, (2), pp. 581584.
    13. 13)
      • 13. Sanz-Izquierdo, B., Parker, E.A.: ‘Dual polarized reconfigurable frequency selective surfaces’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 764771.
    14. 14)
      • 14. Zeng, X., Zhang, L., Wan, G., et al: ‘Active metamaterial absorber with controllable polarisation and frequency’, IET Electron. Lett., 2017, 53, (16), pp. 10851086.
    15. 15)
      • 15. Ghosh, S., Srivastava, K.V.: ‘Polarization-insensitive single and broadband switchable absorber/reflector and its realization using a novel biasing technique’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 36653670.
    16. 16)
      • 16. Costa, F., Monorchio, A., Vastante, G.P.: ‘Tunable high-impedance surface with a reduced number of varactors’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 1113.
    17. 17)
      • 17. Ebrahimi, A., Shen, Z., Withayachumnankul, W., et al: ‘Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network’, IEEE Trans. Antennas Propag., 2016, 64, (5), pp. 16721680.
    18. 18)
      • 18. Safari, M., Shafai, C., Shafai, L.: ‘X-band tunable frequency selective surface using MEMS capacitive loads’, IEEE Trans. Antennas Propag., 2015, 63, (3), pp. 10141021.
    19. 19)
      • 19. Tennant, A., Chambers, B.: ‘A single-layer tuneable microwave absorber using an active FSS’, IEEE Microw. Wirel. Compon. Lett., 2004, 14, (1), pp. 4647.
    20. 20)
      • 20. Xu, W., Sonkusale, S.: ‘Microwave diode switchable metamaterial reflector/absorber’, Appl. Phys. Lett., 2013, 103, (3), p. 031902.
    21. 21)
      • 21. Yuan, H., Zhu, B.O., Feng, Y.: ‘A frequency and bandwidth tunable metamaterial absorber in X-band’, J. Appl. Phys., 2015, 117, (17), p. 173103.
    22. 22)
      • 22. Chen, Q., Jiang, J.J., Xu, X.X., et al: ‘Thin and broadband electromagnetic absorber design using resistors and capacitors loaded frequency selective surface’. J. Electromagn. Waves Appl., 2012, 26, (16), pp. 21022111.
    23. 23)
      • 23. Kong, P., Yu, X.W., Liu, Z.Y., et al: ‘A novel tunable frequency selective surface absorber with dual-DOF for broadband applications’, Opt. Express, 2014, 22, (24), pp. 3021730224.
    24. 24)
      • 24. Fan, Y., Zhang, H.C., Yin, J.Y., et al: ‘An active wideband and wide-angle electromagnetic absorber at microwave frequencies’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 19131916.
    25. 25)
      • 25. Yi, D., Wei, X.C., Xu, Y.L.: ‘Tunable microwave absorber based on patterned graphene’, IEEE Trans. Microw. Theory Tech., 2017, 65, (8), pp. 28192826.
    26. 26)
      • 26. NXP Semiconductors: ‘BAP70-03 general purpose PIN diode – product data sheet’. Available at https://www.nxp.com/docs/en/data-sheet/BAP70-03.pdf, accessed 7 December 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0691
Loading

Related content

content/journals/10.1049/iet-map.2017.0691
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address