High dynamic range, low power, tunable, active filter for RF and microwave wireless applications

High dynamic range, low power, tunable, active filter for RF and microwave wireless applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this work, a novel solution for the design of active filters is presented. The proposed approach is based on the use of single-transistor active inductors in class-AB operation with minimum power consumption (2 mW) and good dynamic range (about 100 dB). This approach also allows potential implementation of monolithic technology. The proposed solution has been validated with a hybrid prototype, fabricated and tested in the authors’ labs. The measured performances demonstrate its feasibility for use in commercial applications.


    1. 1)
      • 1. Elwakil, A.S., Maundy, B.J.: ‘Single transistor active filters: what is possible and what is not’, IEEE Trans. Circuits Syst. I: Regul. Pap., 2014, 61, (9), pp. 25172524.
    2. 2)
      • 2. Hara, S., Tokumitsu, T., Aikawa, M.: ‘Lossless broad band monolithic microwave active inductor’, IEEE Trans. Microw. Theory Tech., 1989, 37, (12), pp. 19791984.
    3. 3)
      • 3. Wu, Y., Ding, X., Ismail, M., et al: ‘RF bandpass filter design based on CMOS active inductors’, IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., 2003, 50, (12), pp. 942949.
    4. 4)
      • 4. Chang, Y., Choma, J.Jr., Willis, J.: ‘The design and analysis of a RF CMOS bandpass filter’. ISCAS 2000-IEEE Int. Symp. on Circuits and Systems, Geneva, Switzerland, 28–31 May 2000.
    5. 5)
      • 5. Kaunisto, R., Alinikula, P., Stadius, K., et al: ‘A low-power HBT MMIC filter based on tunable active inductors’, IEEE Microw. Guid. Wave Lett., 1997, 7, (8), pp. 209211.
    6. 6)
      • 6. Pantoli, L., Stornelli, V., Leuzzi, G.: ‘Low-noise tunable filter design by means of active components’, Electron. Lett., 2016, 52, (1), pp. 8688, doi: 10.1049/el.2015.2225.
    7. 7)
      • 7. Leuzzi, G., Stornelli, V., Pantoli, L., et al: ‘Single transistor high linearity and wide dynamic range active inductor’, Int. J. Circuit Theory Appl., 2015, 43, (3), pp. 277285.
    8. 8)
      • 8. Branchi, P., Pantoli, L., Stornelli, V., et al: ‘RF and microwave high-Q floating active inductor design and implementation’, Int. J. Circuit Theory Appl., 2014, 43, (8), pp. 10951104, doi: 10.1002/cta.1991.
    9. 9)
      • 9. Thanachayanont, A., Sae Ngow, S.: ‘Class AB VHF CMOS active inductor’. 45th Midwest Symp. on Circuits and Systems (MWSCAS), 2002, vol. 1, pp. 6467.
    10. 10)
      • 10. Yuan, F.: ‘CMOS active inductors and transformers’, in ‘Principle, implementation, and applications’ (Springer, Boston, MA, 2008).
    11. 11)
      • 11. Pantoli, L., Stornelli, V., Leuzzi, G.: ‘Class AB tunable active inductor’, Electron. Lett., 2015, 51, (1), pp. 6567.
    12. 12)
      • 12. Zverev, A.I.: ‘Handbook of Filter synthesis’ (Wiley, New York, 1967).
    13. 13)
      • 13. Infineon Technologies AG, BBY58 silicon tuning diodes datasheet, available at:, 2007.
    14. 14)
      • 14. Mohammadi, L., Koh, K.J.: ‘2–4 GHz Q-tunable LC bandpass filter with 172-dBHz peak dynamic range, resilient to +15-dBm out-of-band blocker’. 2015 IEEE Custom Integrated Circuits Conf. (CICC), San Jose, CA, 2015, pp. 14.
    15. 15)
      • 15. Mohammadi, L., Koh, K.J.: ‘Low power highly linear band-pass/band-stop filter for 2–4 GHz with less than 1% of fractional bandwidth in 0.13 µm CMOS technology’. 2017 IEEE Radio Frequency Integrated Circuits Symp. (RFIC), Honolulu, HI, 2017, pp. 292295.
    16. 16)
      • 16. Kumar, V., Mehra, R., Islam, A.: ‘A 2.5 GHz low power, high-Q, reliable design of active bandpass filter’, IEEE Trans. Device Mater. Reliab., 2017, 17, (1), pp. 229244.
    17. 17)
      • 17. Wu, B., Chiu, Y.: ‘A 40 nm CMOS derivative-free IF active-RC BPF with programmable bandwidth and center frequency achieving over 30 dBm IIP3’, IEEE J. Solid-State Circuits, 2015, 50, (8), pp. 17721784.
    18. 18)
      • 18. Wang, S., Lin, W.-J.: ‘C-band complementary metal-oxide-semiconductor bandpass filter using active capacitance circuit’, IET Microw. Antennas Propag., 2014, 8, (15), pp. 14161422.
    19. 19)
      • 19. Fan, K.-W., Weng, C.-C., Tsai, Z.-M., et al: ‘K-band MMIC active band-pass Filters’, IEEE Microw. Wirel. Compon. Lett., 2005, 15, (1), pp. 1921.
    20. 20)
      • 20. Chaturvedi, S., Božanić, M., Sinha, S.: ‘A 50 GHz SiGe BiCMOS active bandpass filter’. 2017 IEEE 20th Int. Symp. on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Dresden, 2017, pp. 25.

Related content

This is a required field
Please enter a valid email address