access icon free Overcoming the Chu lower bound on antenna Q with highly dispersive lossy material

Beginning with a brief overview of the history of lower bounds on the quality factor Q of antennas and the fundamental relationships between the impedance, bandwidth, and Q of antennas, it is demonstrated by means of RLC circuit models of electrically small antennas that their isolated-resonance quality factors obtained from the ‘Q-energy’ predicts their bandwidths with greater accuracy than the ‘equivalent-circuit’ energies or the ‘electrodynamic’ energies. A generalisation is obtained for quasi-static fields of antennas that facilitate the evaluation of the expressions for the Q-energy. It is verified that the Q-energy cannot be considered stored energy in the highly dispersive lossy material. Nonetheless, using tuning elements containing highly dispersive lossy material, the bandwidth of fifty-per cent (for example) efficient electrically small dipole antennas can be designed with twice the bandwidth predicted by the Chu lower bound for the quality factor of fifty-per cent efficient antennas.

Inspec keywords: Q-factor; dipole antennas; RLC circuits

Other keywords: isolated-resonance quality factors; electrically small dipole antennas; quasistatic fields; dispersive lossy material; Q-energy; Chu lower bound; RLC circuit models

Subjects: Single antennas

References

    1. 1)
      • 21. Hujanen, A., Holmberg, J., Sten, J.C.-E.: ‘Bandwidth limitations of impedance matched ideal dipoles’, IEEE Trans. Antennas Propag., 2005, 53, pp. 32363239.
    2. 2)
      • 12. Stuart, H.R., Yaghjian, A.D.: ‘Approaching the lower bounds on Q for electrically small electric-dipole antennas using high permeability shells’, IEEE Trans. Antennas Propag., 2010, 58, pp. 38653872.
    3. 3)
      • 9. Stuart, H.R.: ‘Eigenmode analysis of small multielement spherical antennas’, IEEE Trans. Antennas Propag., 2008, 56, pp. 28412851.
    4. 4)
      • 32. Boardman, A.D., Marinov, K.: ‘Electromagnetic energy in a dispersive metamaterial’, Phys. Rev. B, 2006, 73, p. 165110(17).
    5. 5)
      • 33. Ikonen, P.M.T., Tretyakov, S.A.: ‘Generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method’, IEEE Trans. MTT, 2007, 55, pp. 9299.
    6. 6)
      • 23. Rahola, J.: ‘Bandwidth potential and electromagnetic isolation: tools for analyzing the impedance behaviour of antenna systems’. Proc. European Conf. on Antennas and Propagation, Berlin, 2009, pp. 2327.
    7. 7)
      • 3. Kim, O.S., Breinbjerg, O., Yaghjian, A.D: ‘Electrically small magnetic-dipole antennas with quality factors approaching the Chu lower bound’, IEEE Trans. Antennas Propag., 2010, 58, pp. 18981906.
    8. 8)
      • 8. Stuart, H.R., Best, S.R.: ‘A small wideband multimode antenna’. IEEE Antennas and Propagation Society Int. Symp., San Diego, CA, 2008, p. 4.
    9. 9)
      • 19. Yaghjian, A.D.: ‘Improved formulas for the Q of antennas with highly lossy dispersive materials’, IEEE Antenna Wirel. Propag. Lett., 2006, 5, pp. 365369.
    10. 10)
      • 25. Wolff, H.: ‘High-speed frequency-shift keying of LF and VLF radio circuits’, IRE Trans. Commun. Syst., 1957, 5, pp. 2942.
    11. 11)
      • 15. Yaghjian, A.D., Gustafsson, M., Jonsson, B.L.G.: ‘Minimum Q for lossy and lossless electrically small dipole antennas’, Prog. Electromagn. Res., 2013, 143, pp. 641673.
    12. 12)
      • 24. Hrabar, S., Sipus, Z., Malcic, I.: ‘Broadening of cloaking bandwidth by passive and active techniques’, in Werner, D.H., Kwon, D.-H. (Eds.): ‘Transformation electromagnetics and metamaterials’ (Springer, London, 2014), ch. 12.
    13. 13)
      • 20. Yang, T., Davis, W.A., Stutzman, W.L.: ‘The design of ultra-wideband antennas with performance close to the fundamental limit’. Proc. URSI General Assembly, Chicago, IL, 2008, p. 234.
    14. 14)
      • 11. Yaghjian, A.D., Stuart, H.R.: ‘Lower bounds on the Q of electrically small dipole antennas’, IEEE Trans. Antennas Propag., 2010, 58, pp. 31143121.
    15. 15)
      • 34. Storer, J.E.: ‘Passive network synthesis’ (McGraw-Hill, New York, 1957).
    16. 16)
      • 4. Hansen, T.V., Kim, O.S., Breinbjerg, O.: ‘Properties of sub-wavelength spherical antennas with arbitrarily lossy magnetodielectric cores approaching the Chu lower bound’, IEEE Trans. Antennas Propag., 2013, 62, pp. 14561460.
    17. 17)
      • 10. Hansen, R.C., Collin, R.E.: ‘A new Chu formula for Q’, IEEE Antennas Propag. Mag., 2009, 51, pp. 3841.
    18. 18)
      • 13. Kim, O.S.: ‘Electric dipole antennas with magnetic-coated PEC cores: reaching the Chu lower bound on Q’, IEEE Trans. Antennas Propag., 2012, 60, pp. 16161619.
    19. 19)
      • 26. Galejs, J.: ‘Switching of reactive elements in high-Q antennas’, IEEE Trans. Commun. Syst., 1963, 11, pp. 254255.
    20. 20)
      • 16. Yaghjian, A.D., Gustafsson, M., Jonsson, B.L.G.: ‘Quality factor for antennas (a tutorial)’, FERMAT, 2014, 4, pp. 127.
    21. 21)
      • 1. Chu, L.J.: ‘Physical limitations of omni-directional antennas’, J. Appl. Phys., 1948, 19, pp. 11631175.
    22. 22)
      • 22. Stuart, H.R., Best, S.R., Yaghjian, A.D.: ‘Limitations in relating quality factor to bandwidth in a double resonance small antenna’, IEEE Antenna Wirel. Propag. Lett., 2007, 6, pp. 460463.
    23. 23)
      • 7. Stuart, H.R., Pidwerbetsky, A.: ‘Electrically small antenna elements using negative permittivity resonators’, IEEE Trans. Antennas Propag., 2006, 54, pp. 16441653.
    24. 24)
      • 28. Stratton, J.A.: ‘Electromagnetic Theory’ (McGraw-Hill, New York, 1941).
    25. 25)
      • 18. Yaghjian, A.D., Best, S.R.: ‘Impedance, bandwidth, and Q of antennas’, IEEE Trans. Antennas Propag., 2005, 53, pp. 12981324.
    26. 26)
      • 5. Thal, H.L.: ‘New radiation Q limits for spherical wire antennas’, IEEE Trans. Antennas Propag., 2006, 54, pp. 27572763.
    27. 27)
      • 31. Tretyakov, S.A.: ‘Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss’, Phys. Letts. A, 2005, 343, pp. 231237.
    28. 28)
      • 29. Haus, H.A., Melcher, J.R.: ‘Electromagnetic fields and Energy’ (Prentice-Hall, Englewood Cliffs, NJ, 1989).
    29. 29)
      • 30. Robinson, F.N.H.: ‘Macroscopic Electromagnetism’ (Pergamon, Oxford, 1973).
    30. 30)
      • 35. Vorobyev, O.B.: ‘Energy density and velocity of electromagnetic waves in lossy chiral medium’, J. Opt., 2014, 16, p. 015701(19).
    31. 31)
      • 2. Wheeler, H.A.: ‘The spherical coil as an inductor, shield, or antenna’, Proc. IRE, 1958, 46, pp. 15951602.
    32. 32)
      • 17. Yaghjian, A.D.: ‘Overcoming the Chu lower bound on antenna Q with highly dispersive lossy material’. Proc. European Conf. on Antennas and Propagation, Paris, 2017, pp. 15541558.
    33. 33)
      • 6. Best, S.R.: ‘The radiation properties of electrically small folded spherical helix antennas’, IEEE Trans. Antennas Propag., 2004, 52, pp. 953960.
    34. 34)
      • 27. Jackson, J.D.: ‘Classical Electrodynamics’ (Wiley, New York, 1999, 3rd edn.).
    35. 35)
      • 14. Yaghjian, A.D.: ‘Internal energy, Q-energy, Poynting's theorem, and the stress dyadic in dispersive material’, IEEE Trans. Antennas Propag., 2007, 55, pp. 14951505.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0648
Loading

Related content

content/journals/10.1049/iet-map.2017.0648
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading