http://iet.metastore.ingenta.com
1887

Simulation-driven size-reduction-oriented design of multi-band antennas by means of response features

Simulation-driven size-reduction-oriented design of multi-band antennas by means of response features

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the problem of explicit size reduction of multi-band antennas by means of simulation-driven optimisation. The principal difficulty of electromagnetic (EM)-based miniaturisation of multi-band antennas is that several resonances have to be controlled independently (both in terms of their frequency allocation and depth) while attempting to reduce physical dimensions of the structure at hand. The design method of choice in this work is feature-based optimisation (FBO) framework. The methodology has been shown as appropriate for handling multi-band antenna responses. The primary objective of the optimisation process is the footprint area of the antenna. At the same time, design requirements pertinent to reflection characteristics are handled by means of a penalty function approach. The properties of the FBO framework, namely ‘flattening’ of the functional landscape, allows to keep the design optimisation costs at acceptable levels of few dozens of evaluation of the EM simulation model of the antenna. For the sake of demonstration, two antenna structures are considered, a dual-band patch antenna, and a triple-band dipole antenna. Considerable size-reduction ratios are achieved, over 50% and almost 30% for the first and the second structures, respectively. Numerical results are validated experimentally.

References

    1. 1)
      • 1. Zhang, S., Lau, B.K., Sunesson, A., et al: ‘Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications’, IEEE Trans. Antennas Propag., 2012, 60, pp. 43724380.
    2. 2)
      • 2. Xiaomu, H., Yan, S., Vandenbosch, G.A.E.: ‘Wearable button antenna for dual-band WLAN applications with combined on and off-body radiation patterns’, IEEE Trans. Antennas Propag., 2017, 65, pp. 13841387.
    3. 3)
      • 3. Lizzi, L., Ferrero, F.: ‘Use of ultra-narrow band miniature antennas for Internet-of-things applications’, Electron. Lett., 2015, 51, pp. 19641966.
    4. 4)
      • 4. Jung, Y.H., Qiu, Y., Lee, S., et al: ‘A compact parylene-coated WLAN flexible antenna for implantable electronics’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 13821385.
    5. 5)
      • 5. Zong, B.F., Wang, G.M., Wang, Y.W., et al: ‘Compact antenna using finger-connected interdigital capacitor-based composite right/left-handed transmission-line unit cell’, IEEE Trans. Antennas Propag., 2016, 64, (5), pp. 19941999.
    6. 6)
      • 6. Chen, Z., Shen, Z.: ‘A compact cavity-backed endfire slot antenna’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 281284.
    7. 7)
      • 7. Huang, G.L., Zhou, S.G., Yuan, T.: Development of a wideband and high-efficiency waveguide-based compact antenna radiator with binder-jetting technique’, IEEE Trans. Comput. Packag. Manuf. Technol., 2017, 7, (2), pp. 254260.
    8. 8)
      • 8. Pan, Y.M., Leung, K.W., Lu, K.: ‘Compact quasi-isotropic dielectric resonator antenna with small ground plane’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 577585.
    9. 9)
      • 9. Koziel, S., Bekasiewicz, A.: ‘Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization’, IEEE Trans. Antennas Propag., 2017, 65, (7), pp. 34273436.
    10. 10)
      • 10. Forouzannezhad, P., Jafargholi, A., Jahanbakhshi, A.: ‘Multiband compact antenna for near-field and far-field RFID and wireless portable applications’, IET Microw, Antennas Propag., 2017, 11, pp. 535541.
    11. 11)
      • 11. Pan, Y., Zheng, S.: ‘A compact quasi-isotropic shorted patch antenna’, IEEE Access, 2017, 5, pp. 27712778.
    12. 12)
      • 12. Shi, S., Che, W., Yang, W., et al: ‘Miniaturized patch antenna with enhanced bandwidth based on signal-interference feed’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 281284.
    13. 13)
      • 13. Cao, W., Xiang, Y., Zhang, B., et al: ‘A low-cost compact patch antenna with beam steering based on CSRR-loaded ground’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 15201523.
    14. 14)
      • 14. Agarwal, K., Nasimuddin Alphones, A.: ‘Triple-band compact circularly polarised stacked microstrip antenna over reactive impedance meta-surface for GPS applications’, IET Microw. Antennas Propag., 2014, 8, (13), pp. 10571065.
    15. 15)
      • 15. Si, L.M., Zhu, W., Sun, H.J.: ‘A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 305308.
    16. 16)
      • 16. Ferdous, S., Hossain, A., Chowdhury, S.M.H., et al: ‘Reduced and conventional size multi-band circular patch antennas loaded with metamaterials’, IET Microw., Antennas Propag., 2013, 7, (9), pp. 768776.
    17. 17)
      • 17. Koziel, S., Bekasiewicz, A.: ‘A structure and simulation-driven design of compact CPW-fed UWB antenna’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 750753.
    18. 18)
      • 18. Koziel, S., Bekasiewicz, A., Cheng, Q.S., et al: ‘On ultra-wideband antenna miniaturization involving efficiency and matching constraints’. European Conf. Antennas Propagation, 2017.
    19. 19)
      • 19. Koziel, S., Bekasiewicz, A.: ‘Fast EM-driven size reduction of antenna structures by means of adjoint sensitivities and trust regions’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 16811684.
    20. 20)
      • 20. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley, New York, 2001).
    21. 21)
      • 21. Koziel, S., Bekasiewicz, A.: ‘Computationally feasible narrow-band antenna modeling using response features’, Int. J. RF Microw. Comput. Aided Eng., 2017, 27, (4), pp. 110.
    22. 22)
      • 22. Koziel, S., Bekasiewicz, A.: ‘Rapid dimension scaling of dual-band antennas using variable-fidelity EM models and inverse surrogates’, J. Electromagn Waves Appl., 2017, 31, pp. 297308.
    23. 23)
      • 23. Microwave Studio, C.S.T.: ver. 2013, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2013.
    24. 24)
      • 24. Chen, Y.-C., Chen, S.-Y., Hsu, P.: ‘Dual-band slot dipole antenna fed by a coplanar waveguide’. IEEE Antennas Propagation Society Int. Symp., 2006, pp. 35893592.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0632
Loading

Related content

content/journals/10.1049/iet-map.2017.0632
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address