access icon free Graphene oxide-based radiofrequency identification wearable sensor for breath monitoring

The monitoring of the breathing dynamic characteristics, including the presence of biomarkers in exhaled breath, is of growing interest in non-invasive diagnosis of diseases. The authors describe a wearable radiofrequency identification device hosting a flexible antenna suitable for integration into a facemask and a sensor made of graphene oxide sensitive to the humidity variations. The resulting sensor tag was characterised in reference conditions while its communication performance was estimated by electromagnetic simulations as well as measurements over a simplified model of the human head. Finally, the whole system was tested on a volunteer and was experimentally demonstrated to be capable of detecting the inhalation/exhalation cycles and abnormal patterns of respiration like the apnea by measuring the changes in graphene oxide resistance.

Inspec keywords: pneumodynamics; radiofrequency identification; wearable antennas; diseases; graphene devices; patient monitoring; body sensor networks; electric resistance measurement; patient diagnosis

Other keywords: breath monitoring; resulting sensor tag; wearable radiofrequency identification device; inhalation cycle detection; exhalation cycle detection; graphene oxide-based radiofrequency identification wearable sensor; electromagnetic simulations; noninvasive disease diagnosis; communication performance; reference conditions; graphene oxide resistance; breathing dynamic characteristics monitoring; human head model; flexible antenna; facemask; respiration abnormal pattern detection; humidity variations

Subjects: Biomedical measurement and imaging; Impedance and admittance measurement; Fullerene, nanotube and related devices; RFID systems; Patient care and treatment; Biomedical communication; Single antennas; Wireless sensor networks

References

    1. 1)
      • 17. Murata. Available at http://www.murata.com.
    2. 2)
      • 25. Amendola, S., Bovesecchi, G., Palombi, A., et al: ‘Design, calibration and experimentation of an epidermal RFID sensor for remote temperature monitoring’, IEEE Sens. J., 2016, 16, (19), pp. 72507257.
    3. 3)
      • 24. Occhiuzzi, C., Vallese, C., Amendola, S., et al: ‘NIGHT-Care: A passive RFID system for remote monitoring and control of overnight living environment’, Procedia Comput. Sci., 2014, 32, pp. 190197.
    4. 4)
      • 2. Güder, F., Ainla, A., Redston, J., et al: ‘Paper-based electrical respiration sensor’, Angew. Chemie Int. Ed., 2016, 55, (19), pp. 57275732.
    5. 5)
      • 12. Caccami, M.C., Mulla, M.Y.S., Di Natale, C., et al: ‘Wireless monitoring of breath by means of a graphene oxide-based radiofrequency identification wearable sensor’. 11th European Conf. on Antennas and Propagation, Paris, France, 19–24 March 2017.
    6. 6)
      • 4. Liu, Z.M., Shen, Z.H., Zhang, L.: ‘Biomedical applications of graphene’, Theranostics, 2012, 3, (2), pp. 283294.
    7. 7)
      • 26. Amendola, S., Occhiuzzi, C., Manzari, S., et al‘RFID-based multi-level sensing network for industrial internet of things’. inYager, R.R., Espada, J.P. (Ed.): ‘New advances in the internet of things’ (Springer, Switzerland, 2017, 1st edn.), pp. 124.
    8. 8)
      • 10. Akbari, M., Virkki, J., Sydänheimo, L., et al: ‘Toward graphene-based passive UHF RFID textile tags: A reliability study’, IEEE Trans. Device Mater. Reliab., 2016, 16, (3), pp. 429431.
    9. 9)
      • 19. Speag®, http://www.speag.com/products/dasy6/tissue-simulating-liquids.
    10. 10)
      • 22. Marrocco, G., Amato, F.: ‘Self-sensing passive RFID: from theory to tag design and experimentation’. 2009 European Microwave Conf. (EuMC), Rome, 2009, pp. 001004.
    11. 11)
      • 20. ThingMagic Reader M5e. Available at http://www.thingmagic.com/embedded-rfid-readers/mercury5e.
    12. 12)
      • 11. Huang, X., Leng, T., Georgiou, T., et al: ‘Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing’, arXiv preprint arXiv:1711.03435, 2017.
    13. 13)
      • 13. Gasparri, R., Santonico, M., Valentini, C., et al: ‘Volatile signature for the early diagnosis of lung cancer’, J. Breath Res., 2016, 10, (1), pp. 17.
    14. 14)
      • 14. Occhiuzzi, C., Amendola, S., Manzari, S., et al: ‘Configurable radiofrequency identification sensing breadbord for industrial internet of things’, Electron. Lett., 2017, 53, (3), pp. 129130.
    15. 15)
      • 21. Nikitin, P.V., Rao, K.V.S.: ‘Theory and measurement of backscattering from RFID tags’, IEEE Antennas Propag. Mag., 2006, 48, (6), pp. 212218.
    16. 16)
      • 7. Borini, S., White, R., Wei, D., et al: ‘Ultrafast graphene oxide humidity sensors’, ACS Nano, 2013, 7, (12), pp. 1116611173.
    17. 17)
      • 6. Mannoor, M.S., Tao, H., Clayton, J.D., et al: ‘Graphene-based wireless bacteria detection on tooth enamel’, Nat. Commun., 2012, 3, (763), pp. 18.
    18. 18)
      • 9. Leng, T., Huang, X., Chang, K., et al: ‘Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 15651568.
    19. 19)
      • 15. AMS SL900A Tag Chip Datasheet. Available at https://ams.com/ger/content/download/755603/1912935/file/SL900A_Datasheet_EN_v5.pdf.
    20. 20)
      • 3. Zhang, M., Dai, R.R., Naik, L.: ‘Carbon nanomaterials for biomedical applications’, vol. 5, (Springer Series in Biomaterials Science and Engineering, Switzerland, 2016).
    21. 21)
      • 18. Amendola, S., Marrocco, G.: ‘Optimal performance of epidermal antennas for UHF radiofrequency identification and sensing’, IEEE Trans. Antennas Propag., 2017, 65, (2), pp. 473481.
    22. 22)
      • 5. Labroo, P., Cui, Y.: ‘Flexible graphene bionanosensor for lactate’, Biosens. Bioelectron., 2013, 41, pp. 852856.
    23. 23)
      • 23. Farsens RFID ICs White Paper. Available at http://www.farsens.com/en/.
    24. 24)
      • 27. CAEN RFID R1170I - qIDmini Keyfob Bluetooth UHF RFID Reader Datasheet, Application Note. Available at www.caenrfid.it/.
    25. 25)
      • 28. Krilaviciute, A., Heiss, J.A., Leja, M., et al: ‘Detection of cancer through exhaled breath: a systematic review’, Oncotarget, 2015, 6, (36), pp. 3864338657.
    26. 26)
      • 16. CST Microwave Studio Suite®, 2017. Available at https://www.cst.com.
    27. 27)
      • 8. Bi, H., Yin, K., Xie, X., et al: ‘Ultrahigh humidity sensitivity of graphene oxide’, Sci. Rep., 2013, 3, pp. 18.
    28. 28)
      • 1. Amann, A., Miekisch, W., Schubert, J., et al: ‘Analysis of exhaled breath for disease detection’, Annu. Rev. Anal. Chem., 2014, 7, pp. 455482.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0628
Loading

Related content

content/journals/10.1049/iet-map.2017.0628
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading