Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Non-linear characteristics of an optically reconfigurable microwave switch

A novel, high-power optically controlled microwave switch is presented. The switch uses integrated illumination of a silicon superstate through a low-loss glass substrate which reduces losses related to the plasma conductivity tail in the silicon. Numerical electromagnetic modelling is used to design the switch and good agreement between measured and simulated results has been achieved. The switch is then characterised using a two-tone non-linearity test at 2 GHz and a third-order intercept point of +72 dBm is obtained with 10 W per tone.

References

    1. 1)
      • 9. Kaneko, T., Takenaka, T., Low, T.S., et al: ‘Microwave switch: LAMPS (light activated microwave photoconductive switch)’, IEEE Electron. Lett., 2003, 39, (12), pp. 917919.
    2. 2)
      • 4. Rauscher, C.: ‘Reconfigurable bandpass filter with a three-to-one switchable passband width’, IEEE Trans. Microw. Theory Tech., 2003, 51, (2), pp. 573577.
    3. 3)
      • 16. Green, M.A., Keevers, M.J.: ‘Optical properties of intrinsic silicon at 300 K’, Prog. Photovoltaics: Res. Appl., 1995, 3, (3), pp. 189192.
    4. 4)
      • 13. Youssef, T., Joseph, C., Sameer, H., et al: ‘Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS)’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 10751083.
    5. 5)
      • 1. Berezdivin, R., Breinig, R., Topp, R.: ‘Next-generation wireless communications concepts and technologies’, IEEE Commun. Mag., 2002, 40, (3), pp. 108116.
    6. 6)
      • 15. CST Microwave Studio 2015, Computer Simulation Technology, 2015. Available at https://www.cst.com/.
    7. 7)
      • 3. Christodoulou, C.G., Youssef, T., Steven, A.L., et al: ‘Reconfigurable antennas for wireless and space applications’, IEEE Proc., 2012, 100, (7), pp. 22502261.
    8. 8)
      • 11. Kowalczuk, E.K., Seager, R.D., Panagamuwa, C.J.: ‘Power handling of a photoconductive microwave switch’. Antennas and Propagation Conf. (LAPC), Loughborough, UK, November 2016, pp. 13.
    9. 9)
      • 12. Gamlath, C.D., Collett, M.A., Pang, A.W., et al: ‘Investigation of an optically induced superstrate plasma for tuning microstrip antennas’, IET Optoelectron.., 2017, 11, (6), pp. 230236.
    10. 10)
      • 5. Patel, C.D., Rebeiz, G.M.: ‘A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC–40-GHz applications’, IEEE Trans. Microw. Theory Tech., 2012, 60, (10), pp. 30963112.
    11. 11)
      • 6. Chow, L.L.W., Volakis, J.L., Saitou, K., et al: ‘Lifetime extension of RF MEMS direct contact switches in hot switching operations by ball grid array dimple design’, IEEE Electron. Device Lett., 2007, 28, (6), pp. 479481.
    12. 12)
      • 7. Gamlath, C.D., Benton, D.M., Cryan, M.J.: ‘Microwave properties of an inhomogeneous optically illuminated plasma in a microstrip gap’, IEEE Trans. Microw. Theory Tech., 2015, 63, (2), pp. 374383.
    13. 13)
      • 2. Haupt, R.L., Lanagan, M.: ‘Reconfigurable antennas’, IEEE Antennas Propagat. Mag., 2013, 55, (1), pp. 4961.
    14. 14)
      • 10. Kowalczuk, E.K., Panagamuwa, C.J., Seager, R.D., et al: ‘Characterising the linearity of an optically controlled photoconductive microwave switch’. Antennas and Propagation Conf. (LAPC), Loughborough, UK, November 2010, pp. 597600.
    15. 15)
      • 8. Kulygin, M., Denisov, G., Vlasova, K., et al: ‘Nanosecond microwave semiconductor switches for 258… 266 GHz’, J. Infrared, Millim. Terahertz Waves, 2015, 36, (9), pp. 845855.
    16. 16)
      • 14. Jeorrett, A.H., Neale, S.L., Massoubre, D., et al: ‘Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells’, Opt. Express, 2014, 22, (2), pp. 13721380.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0572
Loading

Related content

content/journals/10.1049/iet-map.2017.0572
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address