Non-linear characteristics of an optically reconfigurable microwave switch

Non-linear characteristics of an optically reconfigurable microwave switch

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel, high-power optically controlled microwave switch is presented. The switch uses integrated illumination of a silicon superstate through a low-loss glass substrate which reduces losses related to the plasma conductivity tail in the silicon. Numerical electromagnetic modelling is used to design the switch and good agreement between measured and simulated results has been achieved. The switch is then characterised using a two-tone non-linearity test at 2 GHz and a third-order intercept point of +72 dBm is obtained with 10 W per tone.


    1. 1)
      • 1. Berezdivin, R., Breinig, R., Topp, R.: ‘Next-generation wireless communications concepts and technologies’, IEEE Commun. Mag., 2002, 40, (3), pp. 108116.
    2. 2)
      • 2. Haupt, R.L., Lanagan, M.: ‘Reconfigurable antennas’, IEEE Antennas Propagat. Mag., 2013, 55, (1), pp. 4961.
    3. 3)
      • 3. Christodoulou, C.G., Youssef, T., Steven, A.L., et al: ‘Reconfigurable antennas for wireless and space applications’, IEEE Proc., 2012, 100, (7), pp. 22502261.
    4. 4)
      • 4. Rauscher, C.: ‘Reconfigurable bandpass filter with a three-to-one switchable passband width’, IEEE Trans. Microw. Theory Tech., 2003, 51, (2), pp. 573577.
    5. 5)
      • 5. Patel, C.D., Rebeiz, G.M.: ‘A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC–40-GHz applications’, IEEE Trans. Microw. Theory Tech., 2012, 60, (10), pp. 30963112.
    6. 6)
      • 6. Chow, L.L.W., Volakis, J.L., Saitou, K., et al: ‘Lifetime extension of RF MEMS direct contact switches in hot switching operations by ball grid array dimple design’, IEEE Electron. Device Lett., 2007, 28, (6), pp. 479481.
    7. 7)
      • 7. Gamlath, C.D., Benton, D.M., Cryan, M.J.: ‘Microwave properties of an inhomogeneous optically illuminated plasma in a microstrip gap’, IEEE Trans. Microw. Theory Tech., 2015, 63, (2), pp. 374383.
    8. 8)
      • 8. Kulygin, M., Denisov, G., Vlasova, K., et al: ‘Nanosecond microwave semiconductor switches for 258… 266 GHz’, J. Infrared, Millim. Terahertz Waves, 2015, 36, (9), pp. 845855.
    9. 9)
      • 9. Kaneko, T., Takenaka, T., Low, T.S., et al: ‘Microwave switch: LAMPS (light activated microwave photoconductive switch)’, IEEE Electron. Lett., 2003, 39, (12), pp. 917919.
    10. 10)
      • 10. Kowalczuk, E.K., Panagamuwa, C.J., Seager, R.D., et al: ‘Characterising the linearity of an optically controlled photoconductive microwave switch’. Antennas and Propagation Conf. (LAPC), Loughborough, UK, November 2010, pp. 597600.
    11. 11)
      • 11. Kowalczuk, E.K., Seager, R.D., Panagamuwa, C.J.: ‘Power handling of a photoconductive microwave switch’. Antennas and Propagation Conf. (LAPC), Loughborough, UK, November 2016, pp. 13.
    12. 12)
      • 12. Gamlath, C.D., Collett, M.A., Pang, A.W., et al: ‘Investigation of an optically induced superstrate plasma for tuning microstrip antennas’, IET Optoelectron.., 2017, 11, (6), pp. 230236.
    13. 13)
      • 13. Youssef, T., Joseph, C., Sameer, H., et al: ‘Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS)’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 10751083.
    14. 14)
      • 14. Jeorrett, A.H., Neale, S.L., Massoubre, D., et al: ‘Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells’, Opt. Express, 2014, 22, (2), pp. 13721380.
    15. 15)
      • 15. CST Microwave Studio 2015, Computer Simulation Technology, 2015. Available at
    16. 16)
      • 16. Green, M.A., Keevers, M.J.: ‘Optical properties of intrinsic silicon at 300 K’, Prog. Photovoltaics: Res. Appl., 1995, 3, (3), pp. 189192.

Related content

This is a required field
Please enter a valid email address