Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system

The authors present a new asymmetric structure using an optimisable coil configuration and circuit model to eliminate frequency splitting and increase high-efficiency transfer distance in wireless power transfer (WPT) via magnetic resonance coupling. A pair of non-identical coils is proved theoretically and optimised to limit the coupling coefficient. The series–shunt mixed-resonant circuit structure is adopted to promote the performance of WPT system. The advantages and characteristics of the asymmetric system using mixed-resonant circuit structure based on appropriate non-identical coils are depicted by numerical calculation and simulation. Moreover, the WPT system is finally set up to verify the theory prediction. All the calculated and experimental results show that frequency splitting is suppressed in close distance effectively. Moreover, the high-efficiency transfer distance is proved to exceed the triple diameter of receiving coil. Therefore, a relatively high-efficiency and long-distance WPT system, which can be a good candidate for charging portable electronics, is obtained by selecting suitable circuit parameters and appropriate non-identical coils.

References

    1. 1)
      • 10. Yuan, Q., Chen, Q., Li, L., et al: ‘Numerical analysis on transmission efficiency of evanescent resonant coupling wireless power transfer system’, IEEE Trans. Antennas Propag., 2010, 58, (5), pp. 17511758.
    2. 2)
      • 4. Kurschner, D., Rathge, C., Jumar, U.: ‘Design methodology for high efficient inductive power transfer systems with high coil positioning flexibility’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 372381.
    3. 3)
      • 20. Lyu, Y.L., Meng, F.Y., Yang, G.H., et al: ‘A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 60976107.
    4. 4)
      • 17. Zhao, Z., Zhang, Y., Chen, K.: ‘New progress of magnetically coupled resonant wireless power transfer technology’, Proc. Chin. Soc. Electr. Eng., 2013, 33, (3), pp. 113.
    5. 5)
      • 28. Chen, C.J., Chu, T.H., Lin, C.L., et al: ‘A study of loosely coupled coils for wireless power transfer’, IEEE Trans. Circuits Syst. II, Express Briefs, 2010, 57, (7), pp. 536540.
    6. 6)
      • 21. Huang, X., Ji, Q., Tan, L., et al: ‘Study on series-parallel model of wireless power transfer via magnetic resonance coupling’, Trans. China Electrotech. Soc., 2013, 28, (3), pp. 171187.
    7. 7)
      • 24. Imura, T., Hori, Y.: ‘Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 47464752.
    8. 8)
      • 16. Kim, Y., Ling, H.: ‘Investigation of coupled mode behaviour of electrically small meander antennas’, Electron. Lett., 2007, 43, (23), pp. 12501252.
    9. 9)
      • 11. Kim, J., Kim, J., Kong, S., et al: ‘Coil design and shielding methods for a magnetic resonant wireless power transfer system’, Proc. IEEE, 2013, 101, (6), pp. 13321342.
    10. 10)
      • 1. Kurs, A., Karalis, A., Moffatt, R., et al: ‘Wireless power transfer via strongly coupled magnetic resonances’, Science, 2007, 317, (5834), pp. 8386.
    11. 11)
      • 22. Shen, F.Z., Cui, W.Z., Ma, W., et al: ‘Circuit analysis of wireless power transfer by ‘coupled magnetic resonance’’. IET Int. Communications Conf., Shanghai, China, 2009, pp. 602605.
    12. 12)
      • 14. Zhang, Y., Zhao, Z., Chen, K.: ‘Frequency splitting analysis of magnetically coupled resonant wireless power transfer’. Energy Conversion Congress and Exposition 2013 IEEE, Denver, USA, 2013, pp. 22272232.
    13. 13)
      • 9. Kim, D.W., Chung, Y.D., Kang, H.K., et al: ‘Effects and properties of contactless power transfer for HTS receivers with four-separate resonance coils’, IEEE Trans. Appl. Supercond., 2013, 23, (3), p. 5500404.
    14. 14)
      • 19. Liu, S., Chen, L., Cui, Y., et al: ‘A general theory to analyse and design wireless power transfer based on impedance matching’, Int. J. Electron., 2014, 101, (10), pp. 13751404.
    15. 15)
      • 3. van der Pijl, F., Bauer, P., Castilla, M.: ‘Control method for wireless inductive energy transfer systems with relatively large air gap’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 382390.
    16. 16)
      • 23. Sample, A.P., Meyer, D.A., Smith, J.R.: ‘Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 544554.
    17. 17)
      • 18. Park, J., Tak, Y., Kim, Y., et al: ‘Investigation of adaptive matching methods for near-field wireless power transfer’, IEEE Trans. Antennas Propag., 2011, 59, (5), pp. 17691773.
    18. 18)
      • 5. Kim, J., Son, H.C., Park, Y.J.: ‘Impedance matching considering cross coupling for wireless power transfer to multiple receivers’. 2013 IEEE Wireless Power Transfer (WPT), Perugia, Italy, 2013, pp. 226229.
    19. 19)
      • 26. Kusaka, K., Jun-Ichi, I.: ‘Fundamental evaluation of power supply and rectifiers for wireless power transfer using magnetic resonant coupling’, Electr. Eng. Jpn., 2015, 190, (3), pp. 5767.
    20. 20)
      • 6. Hui, S.Y.: ‘Planar wireless charging technology for portable electronic products and Qi’, Proc. IEEE, 2013, 101, (6), pp. 12901301.
    21. 21)
      • 8. Sample, A.P., Waters, B.H., Wisdom, S.T., et al: ‘Enabling seamless wireless power delivery in dynamic environments’, Proc. IEEE, 2013, 101, (6), pp. 13431358.
    22. 22)
      • 13. Zhang, Y., Zhao, Z., Chen, K.: ‘Frequency-splitting analysis of four-coil resonant wireless power transfer’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 24362445.
    23. 23)
      • 12. Shi, X., Qi, C., Qu, M., et al: ‘Effects of coil shapes on wireless power transfer via magnetic resonance coupling’, J. Electromagn. Waves Appl., 2014, 28, (11), pp. 13161324.
    24. 24)
      • 25. Chen, L., Liu, S., Zhou, Y.C., et al: ‘An optimizable circuit structure for high-efficiency wireless power transfer’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 339349.
    25. 25)
      • 27. Grbic, A., Merlin, R., Thomas, E.M., et al: ‘Near-field plates: metamaterial surfaces/arrays for subwavelength focusing and probing’, Proc. IEEE, 2011, 99, (10), pp. 18061815.
    26. 26)
      • 2. Budhia, M., Boys, J.T., Covic, G.A., et al: ‘Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 318328.
    27. 27)
      • 7. Christ, A., Douglas, M., Nadakuduti, J., et al: ‘Assessing human exposure to electromagnetic fields from wireless power transmission systems’, Proc. IEEE, 2013, 101, (6), pp. 14821493.
    28. 28)
      • 15. Cannon, B.L., Hoburg, J.F., Stancil, D.D., et al: ‘Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 18191825.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0539
Loading

Related content

content/journals/10.1049/iet-map.2017.0539
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address