http://iet.metastore.ingenta.com
1887

Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system

Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a new asymmetric structure using an optimisable coil configuration and circuit model to eliminate frequency splitting and increase high-efficiency transfer distance in wireless power transfer (WPT) via magnetic resonance coupling. A pair of non-identical coils is proved theoretically and optimised to limit the coupling coefficient. The series–shunt mixed-resonant circuit structure is adopted to promote the performance of WPT system. The advantages and characteristics of the asymmetric system using mixed-resonant circuit structure based on appropriate non-identical coils are depicted by numerical calculation and simulation. Moreover, the WPT system is finally set up to verify the theory prediction. All the calculated and experimental results show that frequency splitting is suppressed in close distance effectively. Moreover, the high-efficiency transfer distance is proved to exceed the triple diameter of receiving coil. Therefore, a relatively high-efficiency and long-distance WPT system, which can be a good candidate for charging portable electronics, is obtained by selecting suitable circuit parameters and appropriate non-identical coils.

References

    1. 1)
      • 1. Kurs, A., Karalis, A., Moffatt, R., et al: ‘Wireless power transfer via strongly coupled magnetic resonances’, Science, 2007, 317, (5834), pp. 8386.
    2. 2)
      • 2. Budhia, M., Boys, J.T., Covic, G.A., et al: ‘Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 318328.
    3. 3)
      • 3. van der Pijl, F., Bauer, P., Castilla, M.: ‘Control method for wireless inductive energy transfer systems with relatively large air gap’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 382390.
    4. 4)
      • 4. Kurschner, D., Rathge, C., Jumar, U.: ‘Design methodology for high efficient inductive power transfer systems with high coil positioning flexibility’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 372381.
    5. 5)
      • 5. Kim, J., Son, H.C., Park, Y.J.: ‘Impedance matching considering cross coupling for wireless power transfer to multiple receivers’. 2013 IEEE Wireless Power Transfer (WPT), Perugia, Italy, 2013, pp. 226229.
    6. 6)
      • 6. Hui, S.Y.: ‘Planar wireless charging technology for portable electronic products and Qi’, Proc. IEEE, 2013, 101, (6), pp. 12901301.
    7. 7)
      • 7. Christ, A., Douglas, M., Nadakuduti, J., et al: ‘Assessing human exposure to electromagnetic fields from wireless power transmission systems’, Proc. IEEE, 2013, 101, (6), pp. 14821493.
    8. 8)
      • 8. Sample, A.P., Waters, B.H., Wisdom, S.T., et al: ‘Enabling seamless wireless power delivery in dynamic environments’, Proc. IEEE, 2013, 101, (6), pp. 13431358.
    9. 9)
      • 9. Kim, D.W., Chung, Y.D., Kang, H.K., et al: ‘Effects and properties of contactless power transfer for HTS receivers with four-separate resonance coils’, IEEE Trans. Appl. Supercond., 2013, 23, (3), p. 5500404.
    10. 10)
      • 10. Yuan, Q., Chen, Q., Li, L., et al: ‘Numerical analysis on transmission efficiency of evanescent resonant coupling wireless power transfer system’, IEEE Trans. Antennas Propag., 2010, 58, (5), pp. 17511758.
    11. 11)
      • 11. Kim, J., Kim, J., Kong, S., et al: ‘Coil design and shielding methods for a magnetic resonant wireless power transfer system’, Proc. IEEE, 2013, 101, (6), pp. 13321342.
    12. 12)
      • 12. Shi, X., Qi, C., Qu, M., et al: ‘Effects of coil shapes on wireless power transfer via magnetic resonance coupling’, J. Electromagn. Waves Appl., 2014, 28, (11), pp. 13161324.
    13. 13)
      • 13. Zhang, Y., Zhao, Z., Chen, K.: ‘Frequency-splitting analysis of four-coil resonant wireless power transfer’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 24362445.
    14. 14)
      • 14. Zhang, Y., Zhao, Z., Chen, K.: ‘Frequency splitting analysis of magnetically coupled resonant wireless power transfer’. Energy Conversion Congress and Exposition 2013 IEEE, Denver, USA, 2013, pp. 22272232.
    15. 15)
      • 15. Cannon, B.L., Hoburg, J.F., Stancil, D.D., et al: ‘Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 18191825.
    16. 16)
      • 16. Kim, Y., Ling, H.: ‘Investigation of coupled mode behaviour of electrically small meander antennas’, Electron. Lett., 2007, 43, (23), pp. 12501252.
    17. 17)
      • 17. Zhao, Z., Zhang, Y., Chen, K.: ‘New progress of magnetically coupled resonant wireless power transfer technology’, Proc. Chin. Soc. Electr. Eng., 2013, 33, (3), pp. 113.
    18. 18)
      • 18. Park, J., Tak, Y., Kim, Y., et al: ‘Investigation of adaptive matching methods for near-field wireless power transfer’, IEEE Trans. Antennas Propag., 2011, 59, (5), pp. 17691773.
    19. 19)
      • 19. Liu, S., Chen, L., Cui, Y., et al: ‘A general theory to analyse and design wireless power transfer based on impedance matching’, Int. J. Electron., 2014, 101, (10), pp. 13751404.
    20. 20)
      • 20. Lyu, Y.L., Meng, F.Y., Yang, G.H., et al: ‘A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 60976107.
    21. 21)
      • 21. Huang, X., Ji, Q., Tan, L., et al: ‘Study on series-parallel model of wireless power transfer via magnetic resonance coupling’, Trans. China Electrotech. Soc., 2013, 28, (3), pp. 171187.
    22. 22)
      • 22. Shen, F.Z., Cui, W.Z., Ma, W., et al: ‘Circuit analysis of wireless power transfer by ‘coupled magnetic resonance’’. IET Int. Communications Conf., Shanghai, China, 2009, pp. 602605.
    23. 23)
      • 23. Sample, A.P., Meyer, D.A., Smith, J.R.: ‘Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 544554.
    24. 24)
      • 24. Imura, T., Hori, Y.: ‘Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 47464752.
    25. 25)
      • 25. Chen, L., Liu, S., Zhou, Y.C., et al: ‘An optimizable circuit structure for high-efficiency wireless power transfer’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 339349.
    26. 26)
      • 26. Kusaka, K., Jun-Ichi, I.: ‘Fundamental evaluation of power supply and rectifiers for wireless power transfer using magnetic resonant coupling’, Electr. Eng. Jpn., 2015, 190, (3), pp. 5767.
    27. 27)
      • 27. Grbic, A., Merlin, R., Thomas, E.M., et al: ‘Near-field plates: metamaterial surfaces/arrays for subwavelength focusing and probing’, Proc. IEEE, 2011, 99, (10), pp. 18061815.
    28. 28)
      • 28. Chen, C.J., Chu, T.H., Lin, C.L., et al: ‘A study of loosely coupled coils for wireless power transfer’, IEEE Trans. Circuits Syst. II, Express Briefs, 2010, 57, (7), pp. 536540.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0539
Loading

Related content

content/journals/10.1049/iet-map.2017.0539
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address