FS electromagnetic characterisation of a flexible and scalable X-band RAM

FS electromagnetic characterisation of a flexible and scalable X-band RAM

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Along the years, RADAR absorbing materials (RAM's) have been widely introduced in aeronautic applications and platforms. However, this kind of materials presents three main problems for certain applications when they are intended to be used in real operations. First, they must be scalable from a laboratory sample to actual size, at a reasonable cost. Second, they must be able to work without metal backing for applications in non-metallic vehicles or other objects which surface might not be flat. Indeed, they should also be flexible and surface adaptable. Finally, their absorbing properties against electromagnetic fields should be preferably characterised under real conditions, that is, in free space (FS), in order to design and fabricate an appropriate material for the intended application. In this study, a self-developed, low-cost, bilayer, X-band RAM, composed of a lower layer of polyaniline silicon rubber and a top layer of silicon rubber with graphite was characterised in a bistatic anechoic chamber called BIANCHA, and the results are presented, analysed and compared with software simulation and with the typical single polarisation waveguide measurement method, showing the adequacy of FS measurements for the development of this type of RAM.


    1. 1)
      • 1. Machinerieen, N.: FR Patent 802728, 1936.
    2. 2)
      • 2. Saville, P.: ‘Review of radar absorbing materials’. Technical Memorandum, DRDC Atlantic TM 2005-003, 2005.
    3. 3)
      • 3. Qin, F., Brosseau, C.: ‘A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles’, J. Appl. Phys., 2012, 111, p. 061301, doi:
    4. 4)
      • 4. Liu, Y., Zhao, X.: ‘Study of silicon carbide/graphite double coating polyester woven fabric EMW absorbing property’. IOP Conf. Series: Materials Science and Engineering, 2015, vol. 87, no. 1, pp. 1207612082(7), doi:
    5. 5)
      • 5. Choi, W.-H., Shin, J.-H., Song, T.-H., et al: ‘Design of broadband microwave absorber using honeycomb structure’, Electron. Lett., 2014, 50, (4), pp. 292293, doi: 10.1049/el.2013.3968.
    6. 6)
      • 6. Panwar, R., Agarwala, V., Singh, D.: ‘A cost effective solution for development of broadband radar absorbing material using electronic waste’, Ceram. Int., 2014, 41, (2.B), pp. 29232930, doi:
    7. 7)
      • 7. Zabri, S., Cahill, R., Schuchinsky, A.: ‘Simpler, low-cost stealth’, Electron. Lett., 2015, 51, (2), p. 127, doi: 10.1049/el.2014.4426.
    8. 8)
      • 8. Micheli, D., Vricella, A., Pastore, R., et al: ‘Multi–layered and multi-functional radar absorbing materials for aeronautical applications: numerical and experimental validation’. Fourth Int. Conf. Multifunctional, Hybrid and Nanomaterials, Sitges, Spain, 2015.
    9. 9)
      • 9. Neo, C., Varadan, V.: ‘Optimization of carbon fiber composite for microwave absorber’, IEEE Trans. Electromagn. Compat., 2004, 46, (1), pp. 102106, doi: 10.1109/TEMC.2004.823618.
    10. 10)
      • 10. De Castro, L., Nohara, E., Faez, R., et al: ‘Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline’, Mater. Res., 2007, 10, (1), pp. 143150, doi:
    11. 11)
      • 11. Vinoy, K., Jha, R.: ‘Radar absorbing materials: from theory to design and characterization’ (Kluwer Academic Publishers, Boston, 1996), p. 150.
    12. 12)
      • 12. Hirano, M., Takahashi, M., Abe, M.: ‘A study on reflection coefficient from double layered lossy dielectric by using flanged rectangular waveguide’. IEEE Antennas and Propagation Society Int. Symp., 1999, vol. 1, pp. 298301, doi: 10.1109/APS.1999.789139.
    13. 13)
      • 13. Lee, Y., Malek, F., Cheng, E., et al: ‘Experimental determination of the performance of rice husk-carbon nanotube composites for absorbing microwave signals in the frequency range of 12.4–18 GHz’, Prog. Electromagn. Res., 2014, 140, pp. 795812, doi: 10.2528/PIER13042407.
    14. 14)
      • 14. Baker-Jarvis, J.: ‘Transmission/reflection and short-circuit line permittivity measurements’. NIST Technical Note 1341, 1990.
    15. 15)
      • 15. Baker-Jarvis, J., Janezic, M., Riddle, R., et al: ‘Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials, and negative-index materials’. NIST Technical Note 1536, 2004.
    16. 16)
      • 16. Smith, F., Chambers, B., Bennett, J.: ‘Methodology for accurate free-space characterization of radar absorbing materials’, IEE Proc. Sci. Meas. Technol., 1994, 141, (6), pp. 538546, doi: 10.1049/ip-smt:19941154.
    17. 17)
      • 17. Kraus, J., Fleisch, A.: ‘Electromagnetics with applications’ (McGraw-Hill, Boston, 1999, 5th edn.), pp. 140141.
    18. 18)
      • 18. Folgueras, M., Alvez, M.E., Faez, R., et al: ‘Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline’, Mater. Res., 2010, 13, (2), pp. 197201, doi:
    19. 19)
      • 19. Balanis, C.: ‘Advanced engineering electromagnetics’ (John Wiley & Sons, USA, 2012, 2nd edn.), pp. 213215.
    20. 20)
      • 20. MRL Technical Report.: ‘Radar absorbing materials – mechanisms and materials’, DSTO Materials Research Laboratory, 1989, p. 11.
    21. 21)
      • 21. Huang, Y., Yuan, J., Song, W., et al: ‘Microwave absorbing materials: solutions for real functions under ideal conditions of microwave absorption’, Chin. Phys. Lett., 2010, 27, (2), pp. 197201, doi:
    22. 22)
      • 22. Dallenbach, W., Kleinsteuber, W.: ‘Reflection and absorption of decimeter-waves by plane dielectric layers’, Hochfrequenztechn. Elektroakust., 1938, 51, pp. 152156.
    23. 23)
      • 23. Salisbury, W.: US Patent 2599944, 1952.
    24. 24)
      • 24. Macdiarmid, A., Chiang, J., Richter, A., et al: ‘Polyaniline: a new concept in conducting polymers’, Synth. Met., 1987, 18, (1–3), pp. 285290, doi: 10.1016/0379-6779(87)90893-9.
    25. 25)
      • 25. Chandrasekhar, P.: ‘Conducting polymers, fundamentals and applications: a practical approach’ (Springer US, New York, 1999).
    26. 26)
      • 26. Wu, K., Ting, T., Wang, G., et al: ‘Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites’, Polym. Degrad. Stab., 2008, 93, (2), pp. 483488, doi: 10.1016/j.polymdegradstab.2007.11.009.
    27. 27)
      • 27. De Castro, L., Alves, M., Cerqueira, M.: ‘Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline’, Mater. Res., 2010, 13, (2), pp. 197201, doi: 10.1590/S1516-14392010000200013.
    28. 28)
      • 28. Kwon, S., Ahn, J., Kim, G., et al: ‘Microwave absorbing properties of carbon black/silicone rubber blend’, Polym. Eng. Sci., 2002, 42, (11), pp. 21652171, doi: 10.1002/pen.11106.
    29. 29)
      • 29. Oh, J., Oh, K., Kim, C., et al: ‘Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges’, Compos. B, Eng., 2004, 35, (1), pp. 4956, doi: 10.1016/j.compositesb.2003.08.011.
    30. 30)
      • 30. Aphesteguy, J., Jacobo, S.: ‘Synthesis of a soluble polyaniline-ferrite composite: magnetic and electric properties’, J. Mater. Sci., 2007, 42, (17), pp. 70627068, doi: 10.1007/s10853-006-1423-7.
    31. 31)
      • 31. Escot, D., Poyatos, D., Aguilar, J., et al: ‘Indoor 3D full polarimetric bistatic spherical facility for electromagnetics test’, IEEE Antennas Propag. Mag., 2010, 52, (4), pp. 112118, doi: 10.1109/MAP.2010.5638248.
    32. 32)
      • 32. Hiatt, R.E., Knott, E.F., Senior, T.B.A.: ‘A study of VHF absorbers and anechoic rooms’. Technical Report 5391-1-F, University of Michigan, 1963.
    33. 33)
      • 33. Ghodgaonkar, D., Varadan, V.: ‘A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies’, IEEE Trans. Instrum. Meas., 1989, 38, (3), pp. 789793, doi: 10.1109/19.32194.
    34. 34)
      • 34. Escot, D., Poyatos, D., Montiel, I., et al: ‘Soft computing techniques for free-space measurements of complex dielectric constant’, Appl. Comput. Electromagn. Soc. J., 2009, 24, (3), pp. 318325.
    35. 35)
      • 35. Prabhu, K.: ‘Window functions and their applications in signal processing’ (CRC Press, Boca Ratón, 2013).
    36. 36)
      • 36. Che Seman, F., Cahill, R., Fusco, V.F., et al: ‘Design of a Salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance’, IET Microw. Antennas Propag., 2011, 5, (2), pp. 149156, doi: 10.1049/iet-map.2010.0072.
    37. 37)
      • 37. Salisbury, W.: US Patent 2599944, 1952.

Related content

This is a required field
Please enter a valid email address