Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free FS electromagnetic characterisation of a flexible and scalable X-band RAM

Along the years, RADAR absorbing materials (RAM's) have been widely introduced in aeronautic applications and platforms. However, this kind of materials presents three main problems for certain applications when they are intended to be used in real operations. First, they must be scalable from a laboratory sample to actual size, at a reasonable cost. Second, they must be able to work without metal backing for applications in non-metallic vehicles or other objects which surface might not be flat. Indeed, they should also be flexible and surface adaptable. Finally, their absorbing properties against electromagnetic fields should be preferably characterised under real conditions, that is, in free space (FS), in order to design and fabricate an appropriate material for the intended application. In this study, a self-developed, low-cost, bilayer, X-band RAM, composed of a lower layer of polyaniline silicon rubber and a top layer of silicon rubber with graphite was characterised in a bistatic anechoic chamber called BIANCHA, and the results are presented, analysed and compared with software simulation and with the typical single polarisation waveguide measurement method, showing the adequacy of FS measurements for the development of this type of RAM.

References

    1. 1)
      • 1. Machinerieen, N.: FR Patent 802728, 1936.
    2. 2)
      • 26. Wu, K., Ting, T., Wang, G., et al: ‘Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites’, Polym. Degrad. Stab., 2008, 93, (2), pp. 483488, doi: 10.1016/j.polymdegradstab.2007.11.009.
    3. 3)
      • 29. Oh, J., Oh, K., Kim, C., et al: ‘Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges’, Compos. B, Eng., 2004, 35, (1), pp. 4956, doi: 10.1016/j.compositesb.2003.08.011.
    4. 4)
      • 30. Aphesteguy, J., Jacobo, S.: ‘Synthesis of a soluble polyaniline-ferrite composite: magnetic and electric properties’, J. Mater. Sci., 2007, 42, (17), pp. 70627068, doi: 10.1007/s10853-006-1423-7.
    5. 5)
      • 20. MRL Technical Report.: ‘Radar absorbing materials – mechanisms and materials’, DSTO Materials Research Laboratory, 1989, p. 11.
    6. 6)
      • 22. Dallenbach, W., Kleinsteuber, W.: ‘Reflection and absorption of decimeter-waves by plane dielectric layers’, Hochfrequenztechn. Elektroakust., 1938, 51, pp. 152156.
    7. 7)
      • 34. Escot, D., Poyatos, D., Montiel, I., et al: ‘Soft computing techniques for free-space measurements of complex dielectric constant’, Appl. Comput. Electromagn. Soc. J., 2009, 24, (3), pp. 318325.
    8. 8)
      • 12. Hirano, M., Takahashi, M., Abe, M.: ‘A study on reflection coefficient from double layered lossy dielectric by using flanged rectangular waveguide’. IEEE Antennas and Propagation Society Int. Symp., 1999, vol. 1, pp. 298301, doi: 10.1109/APS.1999.789139.
    9. 9)
      • 27. De Castro, L., Alves, M., Cerqueira, M.: ‘Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline’, Mater. Res., 2010, 13, (2), pp. 197201, doi: 10.1590/S1516-14392010000200013.
    10. 10)
      • 19. Balanis, C.: ‘Advanced engineering electromagnetics’ (John Wiley & Sons, USA, 2012, 2nd edn.), pp. 213215.
    11. 11)
      • 16. Smith, F., Chambers, B., Bennett, J.: ‘Methodology for accurate free-space characterization of radar absorbing materials’, IEE Proc. Sci. Meas. Technol., 1994, 141, (6), pp. 538546, doi: 10.1049/ip-smt:19941154.
    12. 12)
      • 21. Huang, Y., Yuan, J., Song, W., et al: ‘Microwave absorbing materials: solutions for real functions under ideal conditions of microwave absorption’, Chin. Phys. Lett., 2010, 27, (2), pp. 197201, doi: http://dx.doi.org/10.1088/0256-307X/27/2/027702.
    13. 13)
      • 18. Folgueras, M., Alvez, M.E., Faez, R., et al: ‘Dielectric properties of microwave absorbing sheets produced with silicone and polyaniline’, Mater. Res., 2010, 13, (2), pp. 197201, doi: http://dx.doi.org/10.1590/S1516-14392010000200013.
    14. 14)
      • 31. Escot, D., Poyatos, D., Aguilar, J., et al: ‘Indoor 3D full polarimetric bistatic spherical facility for electromagnetics test’, IEEE Antennas Propag. Mag., 2010, 52, (4), pp. 112118, doi: 10.1109/MAP.2010.5638248.
    15. 15)
      • 25. Chandrasekhar, P.: ‘Conducting polymers, fundamentals and applications: a practical approach’ (Springer US, New York, 1999).
    16. 16)
      • 3. Qin, F., Brosseau, C.: ‘A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles’, J. Appl. Phys., 2012, 111, p. 061301, doi: http://dx.doi.org/10.1063/1.3688435.
    17. 17)
      • 36. Che Seman, F., Cahill, R., Fusco, V.F., et al: ‘Design of a Salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance’, IET Microw. Antennas Propag., 2011, 5, (2), pp. 149156, doi: 10.1049/iet-map.2010.0072.
    18. 18)
      • 4. Liu, Y., Zhao, X.: ‘Study of silicon carbide/graphite double coating polyester woven fabric EMW absorbing property’. IOP Conf. Series: Materials Science and Engineering, 2015, vol. 87, no. 1, pp. 1207612082(7), doi: http://dx.doi.org/10.1088/1757-899X/87/1/012076.
    19. 19)
      • 2. Saville, P.: ‘Review of radar absorbing materials’. Technical Memorandum, DRDC Atlantic TM 2005-003, 2005.
    20. 20)
      • 13. Lee, Y., Malek, F., Cheng, E., et al: ‘Experimental determination of the performance of rice husk-carbon nanotube composites for absorbing microwave signals in the frequency range of 12.4–18 GHz’, Prog. Electromagn. Res., 2014, 140, pp. 795812, doi: 10.2528/PIER13042407.
    21. 21)
      • 6. Panwar, R., Agarwala, V., Singh, D.: ‘A cost effective solution for development of broadband radar absorbing material using electronic waste’, Ceram. Int., 2014, 41, (2.B), pp. 29232930, doi: http://dx.doi.org/10.1016/j.ceramint.2014.10.118.
    22. 22)
      • 17. Kraus, J., Fleisch, A.: ‘Electromagnetics with applications’ (McGraw-Hill, Boston, 1999, 5th edn.), pp. 140141.
    23. 23)
      • 14. Baker-Jarvis, J.: ‘Transmission/reflection and short-circuit line permittivity measurements’. NIST Technical Note 1341, 1990.
    24. 24)
      • 8. Micheli, D., Vricella, A., Pastore, R., et al: ‘Multi–layered and multi-functional radar absorbing materials for aeronautical applications: numerical and experimental validation’. Fourth Int. Conf. Multifunctional, Hybrid and Nanomaterials, Sitges, Spain, 2015.
    25. 25)
      • 10. De Castro, L., Nohara, E., Faez, R., et al: ‘Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline’, Mater. Res., 2007, 10, (1), pp. 143150, doi: http://dx.doi.org/10.1590/S1516-14392007000100020.
    26. 26)
      • 32. Hiatt, R.E., Knott, E.F., Senior, T.B.A.: ‘A study of VHF absorbers and anechoic rooms’. Technical Report 5391-1-F, University of Michigan, 1963.
    27. 27)
      • 33. Ghodgaonkar, D., Varadan, V.: ‘A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies’, IEEE Trans. Instrum. Meas., 1989, 38, (3), pp. 789793, doi: 10.1109/19.32194.
    28. 28)
      • 11. Vinoy, K., Jha, R.: ‘Radar absorbing materials: from theory to design and characterization’ (Kluwer Academic Publishers, Boston, 1996), p. 150.
    29. 29)
      • 5. Choi, W.-H., Shin, J.-H., Song, T.-H., et al: ‘Design of broadband microwave absorber using honeycomb structure’, Electron. Lett., 2014, 50, (4), pp. 292293, doi: 10.1049/el.2013.3968.
    30. 30)
      • 9. Neo, C., Varadan, V.: ‘Optimization of carbon fiber composite for microwave absorber’, IEEE Trans. Electromagn. Compat., 2004, 46, (1), pp. 102106, doi: 10.1109/TEMC.2004.823618.
    31. 31)
      • 23. Salisbury, W.: US Patent 2599944, 1952.
    32. 32)
      • 37. Salisbury, W.: US Patent 2599944, 1952.
    33. 33)
      • 24. Macdiarmid, A., Chiang, J., Richter, A., et al: ‘Polyaniline: a new concept in conducting polymers’, Synth. Met., 1987, 18, (1–3), pp. 285290, doi: 10.1016/0379-6779(87)90893-9.
    34. 34)
      • 28. Kwon, S., Ahn, J., Kim, G., et al: ‘Microwave absorbing properties of carbon black/silicone rubber blend’, Polym. Eng. Sci., 2002, 42, (11), pp. 21652171, doi: 10.1002/pen.11106.
    35. 35)
      • 15. Baker-Jarvis, J., Janezic, M., Riddle, R., et al: ‘Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building materials, and negative-index materials’. NIST Technical Note 1536, 2004.
    36. 36)
      • 7. Zabri, S., Cahill, R., Schuchinsky, A.: ‘Simpler, low-cost stealth’, Electron. Lett., 2015, 51, (2), p. 127, doi: 10.1049/el.2014.4426.
    37. 37)
      • 35. Prabhu, K.: ‘Window functions and their applications in signal processing’ (CRC Press, Boca Ratón, 2013).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0482
Loading

Related content

content/journals/10.1049/iet-map.2017.0482
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address