Modelling cascaded cylindrical metasurfaces using sheet impedances and a transmission matrix formulation

Modelling cascaded cylindrical metasurfaces using sheet impedances and a transmission matrix formulation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Metasurfaces that manipulate electromagnetic waves have gained significant attention in recent years. The focus has primarily been on planar devices, while many applications require curved surfaces. In this study, the authors propose an analysis approach for cylindrical cascaded (multilayer) metasurfaces. The approach combines the concept of sheet impedance in the spectral domain with a new transmission matrix formulation that is applicable to stratified, canonical curved geometries. Approximate formulas for the sheet impedance of common planar, metallic patterns are also adapted to curved geometries. The reported analysis approach allows one to determine the optimal spectral-domain, azimuthal dependence of a sheet impedance, as well as the best geometrical elements to obtain the required azimuthal variation. The results are verified through several cylindrical metsurface examples.


    1. 1)
      • 1. Munk, B.A.: ‘Frequency selective surfaces: theory and design’ (John Wiley& Sons, Hoboken, 2005).
    2. 2)
      • 2. Holloway, C.L., Kuester, E.F., Gordon, J., et al: ‘An overview of the theory and applications of metasurfaces: the twodimensional equivalents of metamaterials’, IEEE Antennas Propag. Mag., 2012, 54, pp. 1035.
    3. 3)
      • 3. Pfeiffer, C., Grbic, A.: ‘Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis’, Phys. Rev. Appl., 2014, 2, pp. 111, Art. ID 044011.
    4. 4)
      • 4. Pfeiffer, C., Grbic, A.: ‘Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets’, Phys. Rev. Lett., 2013, 110, pp. 15, Art. ID 197401.
    5. 5)
      • 5. Maci, S., Minatti, G., Casaletti, M., et al: ‘Metasurfing: addressing waves on impenetrable metasurfaces’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 14991502.
    6. 6)
      • 6. Kuester, E.F., Mohamed, M.A., Piket-May, M., et al: ‘Averaged transition conditions for electromagnetic fields at a metafilm’, IEEE Trans. Antennas Propag., 2003, 51, pp. 26412651.
    7. 7)
      • 7. Zhao, Y., Belkin, M.A., Alù, A.: ‘Twisted optical metamaterials for planarized ultrathin broadband circular polarizers’, Nat. Commun., 2012, 3, pp. 870876.
    8. 8)
      • 8. Pfeiffer, C., Grbic, A.: ‘Cascaded metasurfaces for complete phase and polarization control’, Appl. Phys. Lett., 2013, 102, pp. 14Art. ID 231116.
    9. 9)
      • 9. Monticone, F., Estakhri, N.M., Alù, A.: ‘Full control of nanoscale optical transmission with a composite metascreen’, Phys. Rev. Lett., 2013, 110, pp. 15, Art. ID 203903.
    10. 10)
      • 10. Niemi, T., Karilainen, A., Tretyakov, S.: ‘Synthesis of polarization transformers’, IEEE Trans. Antennas Propag., 2013, 61, pp. 31023111.
    11. 11)
      • 11. Selvanayagam, M., Eleftheriades, G.V.: ‘Polarization control using tensor huygens surfaces’, IEEE Trans. Antennas Propag., 2014, 62, pp. 61556168.
    12. 12)
      • 12. Patel, A.M., Grbic, A.: ‘Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces’, IEEE Trans. Microw. Theory Tech., 2014, 62, pp. 11021111.
    13. 13)
      • 13. Elek, F., Tierney, B.B., Grbic, A.: ‘Synthesis of printed-circuit tensor impedance surfaces controlling phase and power flow’, IEEE Trans. Antennas Propag., 2015, 63, pp. 39563962.
    14. 14)
      • 14. Raeker, B.O., Rudolph, S.M.: ‘Arbitrary transformation of antenna radiation using a cylindrical impedance metasurface’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 11011104.
    15. 15)
      • 15. Raeker, B.O., Rudolph, S.M.: ‘Verification of arbitrary radiation pattern control using a cylindrical impedance metasurface’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 995998.
    16. 16)
      • 16. Chen, P.-Y., Alù, A.: ‘Mantle cloaking using thin patterned metasurfaces’, Phys. Rev. B, 2011, 84, pp. 113, Art. ID 205110.
    17. 17)
      • 17. Padooru, Y.R., Yakovlev, A.B., Chen, P.-Y., et al: ‘Line-source excitation of realistic conformal metasurface cloaks’, J. Appl. Phys., 2012, 112, pp. 111, Art. ID 104902.
    18. 18)
      • 18. Soric, J.C., Monti, A., Toscano, A., et al: ‘Dual-polarized reduction of dipole antenna blockage using mantle cloaks’, IEEE Trans. Antennas Propag., 2015, 63, pp. 48274834.
    19. 19)
      • 19. Vellucci, S., Monti, A., Toscano, A., et al: ‘Scattering manipulation and camouflage of electrically small objects through metasurfaces’, Phys. Rev. Appl., 2017, 7, pp. 112, Art. ID 034032.
    20. 20)
      • 20. Sipus, Z., Raffaelli, S., Kildal, P.-S.: ‘Periodic strips on planar and circular cylindrical substrates: exact and asymptotic analysis’, Microw. Opt. Technol. Lett., 1998, 7, pp. 173178.
    21. 21)
      • 21. Luukkonen, O., Simovski, C.R., Grant, G., et al: ‘Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches’, IEEE Trans. Antennas Propag., 2008, 56, pp. 16241632.
    22. 22)
      • 22. Simovski, C.R., De Maagt, P., Melchakova, I.V.: ‘High-impedance surfaces having stable resonance with respect to polarization and incidence angle’, IEEE Trans. Antennas Propag., 2005, 53, pp. 908914.
    23. 23)
      • 23. Pozar, D.M.: ‘Microwave engineering’ (John Wiley & Sons, Hoboken, 2011).
    24. 24)
      • 24. Vardaxoglou, J.C.: ‘Frequency selective surfaces’ (Research Studies Press Ltd., Taunton, England, 1997).
    25. 25)
      • 25. Shuley, N.V.: ‘Higher-order mode interaction in planar periodic structures’, Proc. IEE-H, 1984, 131, pp. 129132.

Related content

This is a required field
Please enter a valid email address