access icon free Dual-band re-configurable graphene-based patch antenna in terahertz band for wireless network-on-chip applications

Wireless network-on-chip (WNoC), with associated on-chip antennas, has been recognised as an alternative solution to overcome the performance limitations of wired networks on chip (NoC). Recently, graphene-based WNoC (GWNoC) architecture with graphene patch antennas in terahertz band was proposed as a viable alternative which can outperform traditional WNoC in terms of bandwidth, energy consumption and a number of cores per system. In this study, a novel design of dual-band re-configurable graphene-based square patch antenna is proposed with orthogonal microstrip line structure for WNoC applications. The proposed antenna can act as wireless transceiver at dual bands of 2.15–2.2 and 2.56–2.6 THz. Its performance in terms of directivity, return loss, fractional bandwidth and beam reconfiguration at different chemical potentials has been analysed.

Inspec keywords: microstrip antennas; multifrequency antennas; graphene; submillimetre wave antennas; network-on-chip; UHF antennas; directive antennas; terahertz waves

Other keywords: energy consumption; GWNoC architecture; wireless network-on-chip applications; wireless transceiver; antenna directivity; dual-band re-configurable graphene-based square patch antenna; graphene-based WNoC architecture; on-chip antennas; return loss; orthogonal microstrip line structure; wired networks on chip; terahertz band; frequency 2.15 GHz to 2.6 GHz; fractional bandwidth; beam reconfiguration

Subjects: Network-on-chip; Single antennas

References

    1. 1)
      • 13. Hanson, G.W.: ‘Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene’, J. Appl. Phys., 2008, 103, p. 064302.
    2. 2)
      • 18. Xiaoyong, H., Rui, L.: ‘Comparison of graphene-based transverse magnetic and electric surface plasmon modes’, IEEE J. Sel. Top. Quantum Electron., 2014, 20, p. 4600106.
    3. 3)
      • 16. Zhou, T., Cheng, Z., Zhang, H., et al: ‘Miniaturized tunable terahertz antenna based on graphene’, Microw. Opt. Technol. Lett., 2014, 56, pp. 17921794.
    4. 4)
      • 2. Kumar, A., Peh, L.S., Kundu, P., et al: ‘Toward ideal on-chip communication using express virtual channels’, IEEE Micro, 2008, 28, (1), pp. 8090.
    5. 5)
      • 15. Morote, M.E., Sebastian, J., Díaz, G., et al: ‘Sinusoidally-modulated graphene leaky-wave antenna for electronic beam scanning at THz’, IEEE Trans. Terahertz Sci. Technol., 2014, 4, (1), pp. 116122.
    6. 6)
      • 9. Tamagnone, M., Gomez-Dıaz, J.S., Mosig, J.R., et al: ‘Reconfigurable terahertz plasmonic antenna concept using a graphene stacks’, Appl. Phys. Lett., 2012, 101, pp. 214102-1214102-4.
    7. 7)
      • 3. Floyd, B.A., Hung, C.-M., O, K.K.: ‘Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters’, IEEE J. Solid-State Circuits, 2002, 37, (5), pp. 543552.
    8. 8)
      • 19. Bao, X.Y., Guo, Y.X., Xiong, Y.Z.: ‘60-GHz AMC based circularly polarized on-chip antenna using standard 0.18-μm CMOS technology’, IEEE Trans. Antennas Propag., 2012, 60, (5), pp. 22342241.
    9. 9)
      • 8. Abadal, S., Cabellos-Aparicio, A., Alarcon, E., et al: ‘Graphene-enabled wireless communication for massive multicore architectures’. IEEE Commun. Mag., 2012, 51, (11), pp. 137143.
    10. 10)
      • 7. Jornet, J.M., Akyildiz, I.F.: ‘Graphene-based nano-antennas for electromagnetic nano communications in the terahertz band’. Proc. of 4th European Conf. on Antennas and Propagation (EuCAP), Barcelona, 2010.
    11. 11)
      • 14. Han, M.Y., Barbaros, O., Zhang, Y., et al: ‘Energy band-gap engineering of graphene nanoribbon’, Phys. Rev. Lett., 2007, 98, pp. 206805206809.
    12. 12)
      • 12. Jablan, M., Buljan, H., Soljacic, M.: ‘Plasmonics in graphene at infrared frequencies’, Phys. Rev. B, 2009, 80, p. 245435.
    13. 13)
      • 17. Xiaoyong, H., Jin, T., Bo, M.: ‘Analysis of graphene TE surface plasmons in the terahertz regime’, Nanotechnology, 2013, 24, p. 345203.
    14. 14)
      • 6. Hanson, G.W.: ‘Dyadic Green's functions for an anisotropic, non-local model of biased graphene’, IEEE Trans. Antennas Propag., 2008, 56, (3), pp. 747757.
    15. 15)
      • 20. Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: ‘Magneto-optical conductivity in graphene’, J. Phys. Condens. Matter., 2006, 19, p. 026222.
    16. 16)
      • 1. International Technology Roadmap for Semiconductors, chp. Interconnects. Available at http://www.itrs.net/reports.html.
    17. 17)
      • 11. Dong, Y., Liu, P., Yu, D., et al: ‘Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 15411545.
    18. 18)
      • 5. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al: ‘Electric field effect in atomically thin carbon films’, Science, 2004, 306, pp. 666669.
    19. 19)
      • 10. Xu, Z., Dong, X.D., Bornemann, J.: ‘Design of a reconfigurable MIMO system for THz communications based on graphene antennas’, IEEE Trans. Terahertz Sci. Technol., 2014, 4, (5), pp. 609617.
    20. 20)
      • 21. O, K.K., Kim, K., Floyd, B.A., et al: ‘Integrated antennas on silicon substrates for communication over free space’, IEEE Electron. Device Lett.., 2004, 25, (4), pp. 196198.
    21. 21)
      • 4. Geim, A., Novoselov, K.: ‘The rise of graphene’, Nat. Mater., 2007, 6, (3), p. 18391.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0415
Loading

Related content

content/journals/10.1049/iet-map.2017.0415
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading