http://iet.metastore.ingenta.com
1887

SIW slot antenna for passive measurement of thermal anomalies in biological tissues

SIW slot antenna for passive measurement of thermal anomalies in biological tissues

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A body contacting substrate integrated waveguide (SIW) slot antenna with 1 GHz cut-off frequency is presented for deep tissue thermometry. The SIW is shorted at one end and fed by an exponentially tapered microstrip line with a defected ground structure. An inclined (137°) off-centred, asymmetric twin slot (23.3×3 mm2) etched on the SIW ground plane is optimised for resonance at 1.3 GHz and directional power deposition over 1.2–1.4 GHz. Antenna measurements indicate >10 dB return loss and high immunity to ambient electromagnetic interference. Antenna brightness temperature measurements indicate the ability to detect a 10 mm diameter hot spot with a temperature rise of 0.6°C at 45 mm depth from the phantom surface.

References

    1. 1)
      • 1. Carr, K.L.: ‘Microwave radiometry: its importance to the detection of cancer’, IEEE Trans. Microw. Theory Tech., 1989, 37, (12), pp. 18621869.
    2. 2)
      • 2. Arunachalam, K., Maccarini, P., De Luca, V., et al: ‘Detection of vesicoureteral reflux using microwave radiometry – system characterization with tissue phantoms’, IEEE Trans. Biomed. Eng., 2011, 58, (6), pp. 16291636.
    3. 3)
      • 3. Snow, B.W., Arunachalam, K., DeLuca, V., et al: ‘Non-invasive vesicoureteral reflux detection: heating risk studies for a new device’, J. Pediatr. Urol., 2011, 7, (6), pp. 624630.
    4. 4)
      • 4. Rodrigues, D.B., Stauffer, P.R., Maccarini, P.F.: ‘Monitoring brown fat metabolic activity using microwave radiometry: antenna design and frequency selection’. Proc. IEEE Benjamin Franklin Symp. Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS), Philadelphia, PA, USA, 2014, pp. 13.
    5. 5)
      • 5. Zampeli, E., Raftakis, K., Michelongona, A., et al: ‘Detection of subclinical synovial inflammation by microwave radiometry’, PLOS ONE, 2013, 8, (5), p. e64606. doi: 10.1371/journal.pone.0064606.
    6. 6)
      • 6. Rodrigues, D.B., Maccarini, P.F., Salahi, S., et al: ‘Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature’, IEEE Trans. Biomed. Eng., 2014, 61, (7), pp. 21542560.
    7. 7)
      • 7. Maruyma, K., Mizushina, S., Sugiura, T., et al: ‘Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry’, IEEE Trans. Microw. Theory Tech., 2000, 48, (11), pp. 21412147.
    8. 8)
      • 8. Bonds, Q., Gerig, J., Weller, T.M., et al: ‘Towards core body temperature measurement via close proximity radiometric sensing’, IEEE Sensors J., 2012, 12, (3), pp. 519526.
    9. 9)
      • 9. Karathanasis, K.T., Gouzouasis, J.A., Karanasiou, I.S., et al: ‘Experimental study of a hybrid microwave radiometry – hyperthermia apparatus with the use of an anatomical head phantom’, IEEE Trans. Inf. Tech. Biomed., 2012, 16, (2), pp. 241247.
    10. 10)
      • 10. Jacobsen, S., Klemetsen, O.: ‘Improved detectability in medical microwave radio-thermometers as obtained by active antennas’, IEEE Trans. Biomed. Eng., 2008, 55, (12), pp. 27782785.
    11. 11)
      • 11. Iudicello, S.: ‘Microwave radiometry for breast cancer detection’. PhD thesis, Universita’ Degli Studi Tor Vergeta Roma, 2009.
    12. 12)
      • 12. Klemetsen, O., Jacobsen, S.: ‘Improved radiometric performance attained by an elliptical microwave antenna with suction’, IEEE Trans. Biomed. Eng., 2012, 59, (1), pp. 263271.
    13. 13)
      • 13. Scheeler, R.P: ‘A microwave radiometer for internal body temperature measurement’. PhD thesis, University of Colorado, 2013.
    14. 14)
      • 14. Jacobsen, S., Klemetsen, Ø.: ‘Active antennas in medical microwave radiometry’, IET Electron. Lett., 2007, 43, (11), pp. 606608.
    15. 15)
      • 15. Bozzi, M., Georgiadis, A., Wu, L.: ‘Review of substrate-integrated waveguide circuits and antennas’, IET Microw. Antenna Propag., 2011, 5, (8), pp. 909920.
    16. 16)
      • 16. Lazebnik, M., Popovic, D., McCartney, L.: ‘A large scale study of the ultra wideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries’, Phys. Med. Biol., 2007, 52, pp. 60936115.
    17. 17)
      • 17. Deslandes, D.: ‘Design equations for tapered microstrip-to-substrate integrated waveguide transitions’. Proc. IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, CA, USA, 23–28 May 2010, pp. 704707.
    18. 18)
      • 18. Sajin, J.S., Praveen, G., Habiba, H.U., et al: ‘Extremely compact phase delay line with CTSRR loaded transmission line’, IET Electron. Lett., 2014, 50, (3), pp. 190192.
    19. 19)
      • 19. Baena, J.D., Bonache, J., Martín, F., et al: ‘Equivalent-circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines’, IEEE Trans. Microw. Theory Tech., 2005, 53, (4), pp. 14511461.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0340
Loading

Related content

content/journals/10.1049/iet-map.2017.0340
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address