http://iet.metastore.ingenta.com
1887

Shared radiator MIMO antenna for broadband applications

Shared radiator MIMO antenna for broadband applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new compact broadband two-port multiple-input–multiple-output (MIMO) antenna using shared radiator is proposed. The radiator making an angle of 135° from X-axis is symmetrically shared by two tapered microstrip feed lines in orthogonal polarisations. The shared radiator MIMO antenna is more compact as compared with conventional MIMO antenna which uses separate radiator for each port. The proposed antenna is designed on low-cost FR4 substrate (dielectric constant = 4.4, and loss tangent = 0.02) of size 39 × 39 mm2 and provides a bandwidth of 136.63% (2.4–12.75 GHz) with reflection coefficients, S 11/S 22 less than or equal to −10 dB and values of mutual coupling between antenna ports S 21/S 12 less than or equal to −15 dB. Through the utilisation of end-loaded meandered line stub attached to modified curved ground plane, low mutual coupling between antenna ports is achieved. The simulated results for input and radiation characteristics of the proposed MIMO antenna are compared with corresponding experimental results.

References

    1. 1)
      • 1. FCC 02–48: ‘First report and order in the matter of revision of part 15 of the commission's rules regarding ultra-wideband transmission systems’, 2002.
    2. 2)
      • 2. Kaiser, T., Zheng, F., Dimitrov, E.: ‘An overview of ultra-wideband-systems with MIMO’, Proc. IEEE, 2009, 97, pp. 285312.
    3. 3)
      • 3. Liu, L., Cheung, S.W., Yuk, T.I.: ‘Compact MIMO antenna for portable devices in UWB applications’, IEEE Trans. Antennas Propag., 2013, 61, (8), pp. 42574264.
    4. 4)
      • 4. Gao, P., He, S., Wei, X., et al: ‘Compact printed UWB diversity slot antenna with 5.5 GHz band-notched characteristics’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 376379.
    5. 5)
      • 5. Ren, J., Hu, W., Yin, Y., et al: ‘Compact printed MIMO antenna for UWB applications’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 15171520.
    6. 6)
      • 6. Kiem, N.K., Phuong, H.N.B., Chien, D.N.: ‘Design of compact 4 × 4 UWB-MIMO antenna with WLAN band rejection’, Int. J. Antennas Propag., 2014, 2014, pp. 111, doi:10.1155/2014/539094.
    7. 7)
      • 7. Huang, H., Liu, Y., Zhang, S.-S., et al: ‘Compact polarization diversity ultrawideband MIMO antenna with triple band-notched characteristics’, Microw. Opt. Technol. Lett., 2015, 57, (4), pp. 946953.
    8. 8)
      • 8. Tripathi, S., Mohan, A., Yadav, S.: ‘Compact octagonal fractal UWB MIMO antenna with WLAN band-rejection’, Microw. Opt. Technol. Lett., 2015, 57, (8), pp. 19191925.
    9. 9)
      • 9. Tao, J., Feng, Q.Y.: ‘Compact isolation enhanced UWB MIMO antenna with band-notch character’, J. Electromagn. Waves Applicat., 2016, 30, pp. 22062214, doi: 10.1080/09205071.2016.1217173.
    10. 10)
      • 10. Zhao, H., Zhang, F., Wang, C., et al: ‘A universal methodology for designing a UWB diversity antenna’, J. Electromagn. Waves Applicat., 2014, 28, (10), pp. 12211235.
    11. 11)
      • 11. Khan, M.S., Capobianco, A.D., Shafique, M.F., et al: ‘Isolation enhancement of a wideband MIMO antenna using floating parasitic element’, Microw. Opt. Technol. Lett., 2015, 57, (7), pp. 16771682.
    12. 12)
      • 12. Tang, T.-C., Lin, K.-H.: ‘An ultrawideband MIMO antenna with dual band-notched function’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 10761079.
    13. 13)
      • 13. Liu, L., Cheung, S.W., Yuk, T.I.: ‘Compact MIMO antenna for portable UWB applications with band-notched characteristics’, IEEE Trans. Antennas Propag., 2015, 63, (5), pp. 19171924.
    14. 14)
      • 14. Li, Q., Feresidis, A.P., Mavridou, M., et al: ‘Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles’, IEEE Trans. Antennas Propag., 2015, 63, (3), pp. 11681171.
    15. 15)
      • 15. Malekpour, N., Honarvar, M.A.: ‘Design of high-isolation compact MIMO antenna for UWB application’, Progress In Electromagnet. Res. C., 2016, 62, pp. 119129.
    16. 16)
      • 16. Liu, X.-L., Wang, Z.-D., Yin, Y.-Z., et al: ‘A compact ultrawideband MIMO antenna using QSCA for high isolation’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 14971500.
    17. 17)
      • 17. Patre, S.R., Singh, S.P.: ‘Broadband MIMO antenna using castor leaf-shaped quasi-self-complementary antenna with dual band-rejection characteristics’, IET Microw. Antennas Propag., 2016, 10, (15), pp. 16731681.
    18. 18)
      • 18. Mao, C.-X., Chu, Q.-X.: ‘Compact coradiator UWB-MIMO antenna with dual polarization’, IEEE Trans. Antennas Propag., 2014, 62, (9), pp. 44744480.
    19. 19)
      • 19. Zhang, J.-Y., Zhang, F., Tian, W.-P., et al: ‘ACS-fed UWB-MIMO antenna with shared radiator’, Electron. Lett., 2015, 51, (17), pp. 13011302.
    20. 20)
      • 20. Srivastava, G., Kanuijia, B., Paulus, R.: ‘UWB MIMO antenna with common radiator’, Int. J. Microw. Wirel. Technol., 2016, 9, pp. 573580.
    21. 21)
      • 21. Srivastava, G., Kanuijia, B.K.: ‘Compact dual band-notched UWB MIMO antenna with shared radiator’, Microw. Opt. Technol. Lett., 2015, 57, (12), pp. 28862891.
    22. 22)
      • 22. Khan, M.S., Capobianco, A.D., Iftikhar, A., et al: ‘A compact dual-polarized ultrawideband multiple-input-multiple-output antenna’, Microw. Opt. Technol. Lett., 2016, 58, (1), pp. 163166.
    23. 23)
      • 23. Blanch, S., Romeu, J., Corbella, I.: ‘Exact representation of antenna system diversity performance from input parameter description’, Electron. Lett., 2003, 39, (9), pp. 705707.
    24. 24)
      • 24. Taga, T.: ‘Analysis for mean effective gain of mobile antennas in land mobile radio environments’, IEEE Trans. Veh. Technol., 1990, 39, (2), pp. 117131.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0331
Loading

Related content

content/journals/10.1049/iet-map.2017.0331
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address