access icon free Expedited EM-driven generation of Pareto-optimal trade-off curves for variable-turn on-chip inductors

This work presents a novel approach to computationally efficient Pareto front identification for variable-turn on-chip inductors. The final outcome is a set of solutions that correspond to the best trade-offs between conflicting design objectives. Here, we consider minimising inductor area and, simultaneously, maximising its quality factor, while maintaining a specified inductance value at a given operating frequency. As opposed to the typically used population-based metaheuristics requiring massive computational resources to generate the entire Pareto front in a single algorithm run, the proposed method reduces the number of necessary structure evaluations by exploiting a point-by-point strategy for determining the consecutive trade-off designs. The original design problem is a mixed-integer task involving integer and non-integer variables (here, the number of inductor windings and its geometry parameters). For the sake of computational efficiency, we develop a separate kriging interpolation model for each considered case of winding turns, and use it, instead of expensive electromagnetic simulations, to obtain the initial Pareto fronts. The non-dominated part of the concatenated initial Pareto sets is subsequently elevated (accuracy-wise) to the level of an electromagnetic analysis by means of a response correction technique. Our considerations are illustrated using a 3.5-nH variable-turn on-chip inductor realised in 65-nm CMOS technology.

Inspec keywords: Pareto optimisation; inductors; interpolation; CMOS integrated circuits

Other keywords: mixed-integer task; point-by-point strategy; consecutive Pareto-optimal trade-off designs; computational efficiency; massive computational resources; winding turns; variable-turn on-chip inductors; initial case-specific Pareto fronts; Pareto-optimal trade-off curves; noninteger variables; computationally efficient Pareto front identification; specified inductance value; CMOS spiral on-chip inductor; expensive electromagnetic simulation; integer variables; quality factor; single-ended configuration; inductor geometry parameters; surrogate-based response correction technique; EM analysis; expedite EM-driven generation; population-based metaheuristics; EM simulation; inductor layout area; inductor windings; data-driven kriging interpolation model; concatenated initial Pareto sets

Subjects: CMOS integrated circuits; Inductors and transformers; Interpolation and function approximation (numerical analysis); Optimisation techniques

References

    1. 1)
      • 32. Afshinmanesh, F., Marandi, A., Shahabadi, M.: ‘Design of a single-feed dual-band dual-polarized printed microstrip antenna using a boolean particle swarm optimization’, IEEE Trans. Antennas Propag., 2008, 53, (7), pp. 18451852.
    2. 2)
      • 15. Gonzalez-Echevarria, R., Castro-Lopez, R., Roca, R., et al: ‘Automated generation of the optimal performance trade-offs of integrated inductors’, IEEE Trans. Comp. Aided Design Integr. Circ. Syst., 2014, 33, (8), pp. 12691273.
    3. 3)
      • 21. Cao, Y., Groves, R.A., Huang, X., et al: ‘Frequency-independent equivalent-circuit model for on-chip spiral inductor’, IEEE J. Solid-State Circ., 2003, 38, (3), pp. 419426.
    4. 4)
      • 20. Wang, X., Zeng, H., Gunasekaran, D., et al: ‘Multi-objective design and optimization of inductors: a generalized software-driven approach’. 2016 IEEE 17th Workshop Control and Modeling for Power Electronics, 2016, pp. 17.
    5. 5)
      • 8. Jeong, Y.-J., Kim, Y.-M., Chang, H.-J., et al: ‘Low-power CMOS VCO with a low-current, high-Q active inductor’, IET Microw. Antennas Propag., 2012, 6, (7), pp. 788792.
    6. 6)
      • 16. Mandal, S.K., Sural, S., Patra, A.: ‘ANN- and PSO-based synthesis of on-chip spiral inductors for RF ICs’, IEEE Trans. Comp. Aided Design Integr. Circ. Syst., 2008, 27, (1), pp. 188192.
    7. 7)
      • 11. Passos, F., Fino, M.H., Roca, E.: ‘Single-objective optimization methodology for the design of RF integrated inductors’. In Camarinha-Matos, L.M., Barrento, N.S., Mendonca, R. (Eds.): ‘Technological innovation for collective awareness systems. DoCEIS 2014. IFIP advances in information and communication Technology’ (Springer, New York, 2014).
    8. 8)
      • 5. Wojnowski, M., Issakov, V., Knoblinger, G., et al: ‘High-Q inductors embedded in the fan-out area of an eWLB’, IEEE Trans. Comp. Pack. Manuf. Techn., 2012, 2, (8), pp. 12801292.
    9. 9)
      • 19. Gupta, R., Ballweber, B.M., Allstot, D.J.: ‘Design and optimization of CMOS RF power amplifiers’, IEEE J. Solid-State Circ., 2001, 36, (2), pp. 166175.
    10. 10)
      • 2. Lin, K.-C., Chiou, H.-K., Wu, P.-C., et al: 2.4-GHz complementary metal oxide semiconductor power amplifier using high-quality factor wafer-level bondwire spiral inductor’, IEEE Trans. Comp. Pack. Manuf. Techn., 2013, 3, (8), pp. 12861292.
    11. 11)
      • 26. Koziel, S., Bekasiewicz, A., Kurgan, P.: ‘Rapid multi-objective simulation-driven design of compact microwave circuits’, IEEE Microw. Wireless Comp. Lett., 2015, 25, (5), pp. 277279.
    12. 12)
      • 22. Arcioni, P., Castello, R., Perregrini, L., et al: ‘An innovative modelization of loss mechanism in silicon integrated inductors’, IEEE Trans. Circ. Syst. II: Analog Dig. Sign. Proc., 1999, 46, (12), pp. 14531460.
    13. 13)
      • 4. Grau, G., Langmann, U., Winkler, W., et al: ‘A current-folded up-conversion mixer VCO with center-tapped inductor in a SiGe-HBT technology for 5-GHz wireless LAN applications’, IEEE J. Solid-State Circ., 2000, 35, (9), pp. 13451352.
    14. 14)
      • 24. Liu, T., Zhang, W., Yu, Z.: ‘Modeling of spiral inductors using artificial neural network’. 2005 IEEE Int. Joint Conf. on Neural Networks, 2005, pp. 23532358.
    15. 15)
      • 23. Yu, W., Bandler, J.W.: ‘Optimization of spiral inductor on silicon using space mapping’. 2006 MTT-S Int. Microwave Symp. Digest, 2006, pp. 10851088.
    16. 16)
      • 14. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley, New York, 2001).
    17. 17)
      • 7. Melly, T., Porret, A.-S., Enz, C.C., et al: ‘An ultralow-power UHF transceiver integrated in a standard digital CMOS process: transmitter’, IEEE J. Solid-State Circ., 2001, 36, (3), pp. 467472.
    18. 18)
      • 27. Queipo, N.V., Haftka, R.T., Shyy, W., et al: ‘Surrogate-based analysis and optimization’, Prog. Aerosp. Sci., 2005, 41, (1), pp. 128.
    19. 19)
      • 1. Leroux, P., Steyaert, M.: ‘High-performance 5.2 GHz LNA with on-chip inductor to provide ESD protection’, Electron. Lett., 2001, 37, (7), pp. 467469.
    20. 20)
      • 3. Chen, C.-H., Chiang, P.-Y., Jou, C.F.: ‘A low voltage mixer with improved noise figure’, IEEE Microw. Wireless Comp. Lett., 2009, 19, (2), pp. 9294.
    21. 21)
      • 29. CST Microwave Studio, ver. 2013. CST AG, Darmstadt, Germany, 2013.
    22. 22)
      • 28. Koziel, S., Bandler, J.W., Madsen, K.: ‘A space mapping framework for engineering optimization: theory and implementation’, IEEE Trans. Microw. Theory Tech., 2006, 54, (10), pp. 37213730.
    23. 23)
      • 31. Kuwahara, Y.: ‘Multiobjective optimization design of Yagi-uda antenna’, IEEE Trans. Antennas Propag., 2005, 53, (6), pp. 19841992.
    24. 24)
      • 17. Fernandez, F.V., Esteban-Muller, J., Roca, E., et al: ‘Stopping criteria in evolutionary algorithms for multi-objective performance optimization of integrated inductors’, 2010 IEEE Congress on Evolutionary Computation, 2010, pp. 18.
    25. 25)
      • 25. Kurgan, P., Koziel, S., Bandler, J.W.: ‘Low-cost EM-driven surrogate modeling and optimization of planar inductors’. 2015 MTT-S Int. Microwave Symp., 2015, pp. 13.
    26. 26)
      • 13. Suhara, M., Okayama, M., Okumara, T.: ‘Analysis of scaling-rule and size-reduction of spiral inductors to maximize quality factor’. 2005 Asia-Pacific Microwave Conf. Proc., 2005, p. 3.
    27. 27)
      • 30. Esteban-Muller, J., Gonzalez-Echevarria, R., Sanchez-Lopez, C.: ‘Multi-objective performance optimization of planar inductors’. 2010 11th Work. Symbolic and Numerical Methods, Modeling and Applications to Circuit Design, 2010, pp. 14.
    28. 28)
      • 9. del Mar Hershenson, M., Mohan, S.S., Boyd, S.P., et al: ‘Optimization of inductor circuits via geometric programming’. Proc. 1999 Design Automation Conf., 1999, pp. 994998.
    29. 29)
      • 12. Collette, Y., Siarry, P.: ‘Multiobjective optimization: Principles and case studies’ (Springer-Verlag, New York, 2004).
    30. 30)
      • 18. Sia, C.B., Ong, B.H., Lim, W.M., et al: ‘Modeling and layout optimization of differential inductors for silicon-based RFIC applications’, IEEE Trans. Electron Dev., 2008, 55, (4), pp. 10581066.
    31. 31)
      • 6. Aguilera, J., de Nó, J., Garia-Alonso, A., et al: ‘A guide for on-chip inductor design in a conventional CMOS process for RF applications’, Appl. Microw. Wireless, 2001, 13, (10), pp. 5665.
    32. 32)
      • 10. Kurgan, P., Koziel, S.: ‘Multi-fidelity design optimization of planar inductors with Sonnet’, 2015 31st Int. Review of Progress Applied Computational Electromagnetics, 2015, pp. 12.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0298
Loading

Related content

content/journals/10.1049/iet-map.2017.0298
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading