Expedited EM-driven generation of Pareto-optimal trade-off curves for variable-turn on-chip inductors

Expedited EM-driven generation of Pareto-optimal trade-off curves for variable-turn on-chip inductors

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work presents a novel approach to computationally efficient Pareto front identification for variable-turn on-chip inductors. The final outcome is a set of solutions that correspond to the best trade-offs between conflicting design objectives. Here, we consider minimising inductor area and, simultaneously, maximising its quality factor, while maintaining a specified inductance value at a given operating frequency. As opposed to the typically used population-based metaheuristics requiring massive computational resources to generate the entire Pareto front in a single algorithm run, the proposed method reduces the number of necessary structure evaluations by exploiting a point-by-point strategy for determining the consecutive trade-off designs. The original design problem is a mixed-integer task involving integer and non-integer variables (here, the number of inductor windings and its geometry parameters). For the sake of computational efficiency, we develop a separate kriging interpolation model for each considered case of winding turns, and use it, instead of expensive electromagnetic simulations, to obtain the initial Pareto fronts. The non-dominated part of the concatenated initial Pareto sets is subsequently elevated (accuracy-wise) to the level of an electromagnetic analysis by means of a response correction technique. Our considerations are illustrated using a 3.5-nH variable-turn on-chip inductor realised in 65-nm CMOS technology.


    1. 1)
      • 1. Leroux, P., Steyaert, M.: ‘High-performance 5.2 GHz LNA with on-chip inductor to provide ESD protection’, Electron. Lett., 2001, 37, (7), pp. 467469.
    2. 2)
      • 2. Lin, K.-C., Chiou, H.-K., Wu, P.-C., et al: 2.4-GHz complementary metal oxide semiconductor power amplifier using high-quality factor wafer-level bondwire spiral inductor’, IEEE Trans. Comp. Pack. Manuf. Techn., 2013, 3, (8), pp. 12861292.
    3. 3)
      • 3. Chen, C.-H., Chiang, P.-Y., Jou, C.F.: ‘A low voltage mixer with improved noise figure’, IEEE Microw. Wireless Comp. Lett., 2009, 19, (2), pp. 9294.
    4. 4)
      • 4. Grau, G., Langmann, U., Winkler, W., et al: ‘A current-folded up-conversion mixer VCO with center-tapped inductor in a SiGe-HBT technology for 5-GHz wireless LAN applications’, IEEE J. Solid-State Circ., 2000, 35, (9), pp. 13451352.
    5. 5)
      • 5. Wojnowski, M., Issakov, V., Knoblinger, G., et al: ‘High-Q inductors embedded in the fan-out area of an eWLB’, IEEE Trans. Comp. Pack. Manuf. Techn., 2012, 2, (8), pp. 12801292.
    6. 6)
      • 6. Aguilera, J., de Nó, J., Garia-Alonso, A., et al: ‘A guide for on-chip inductor design in a conventional CMOS process for RF applications’, Appl. Microw. Wireless, 2001, 13, (10), pp. 5665.
    7. 7)
      • 7. Melly, T., Porret, A.-S., Enz, C.C., et al: ‘An ultralow-power UHF transceiver integrated in a standard digital CMOS process: transmitter’, IEEE J. Solid-State Circ., 2001, 36, (3), pp. 467472.
    8. 8)
      • 8. Jeong, Y.-J., Kim, Y.-M., Chang, H.-J., et al: ‘Low-power CMOS VCO with a low-current, high-Q active inductor’, IET Microw. Antennas Propag., 2012, 6, (7), pp. 788792.
    9. 9)
      • 9. del Mar Hershenson, M., Mohan, S.S., Boyd, S.P., et al: ‘Optimization of inductor circuits via geometric programming’. Proc. 1999 Design Automation Conf., 1999, pp. 994998.
    10. 10)
      • 10. Kurgan, P., Koziel, S.: ‘Multi-fidelity design optimization of planar inductors with Sonnet’, 2015 31st Int. Review of Progress Applied Computational Electromagnetics, 2015, pp. 12.
    11. 11)
      • 11. Passos, F., Fino, M.H., Roca, E.: ‘Single-objective optimization methodology for the design of RF integrated inductors’. In Camarinha-Matos, L.M., Barrento, N.S., Mendonca, R. (Eds.): ‘Technological innovation for collective awareness systems. DoCEIS 2014. IFIP advances in information and communication Technology’ (Springer, New York, 2014).
    12. 12)
      • 12. Collette, Y., Siarry, P.: ‘Multiobjective optimization: Principles and case studies’ (Springer-Verlag, New York, 2004).
    13. 13)
      • 13. Suhara, M., Okayama, M., Okumara, T.: ‘Analysis of scaling-rule and size-reduction of spiral inductors to maximize quality factor’. 2005 Asia-Pacific Microwave Conf. Proc., 2005, p. 3.
    14. 14)
      • 14. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley, New York, 2001).
    15. 15)
      • 15. Gonzalez-Echevarria, R., Castro-Lopez, R., Roca, R., et al: ‘Automated generation of the optimal performance trade-offs of integrated inductors’, IEEE Trans. Comp. Aided Design Integr. Circ. Syst., 2014, 33, (8), pp. 12691273.
    16. 16)
      • 16. Mandal, S.K., Sural, S., Patra, A.: ‘ANN- and PSO-based synthesis of on-chip spiral inductors for RF ICs’, IEEE Trans. Comp. Aided Design Integr. Circ. Syst., 2008, 27, (1), pp. 188192.
    17. 17)
      • 17. Fernandez, F.V., Esteban-Muller, J., Roca, E., et al: ‘Stopping criteria in evolutionary algorithms for multi-objective performance optimization of integrated inductors’, 2010 IEEE Congress on Evolutionary Computation, 2010, pp. 18.
    18. 18)
      • 18. Sia, C.B., Ong, B.H., Lim, W.M., et al: ‘Modeling and layout optimization of differential inductors for silicon-based RFIC applications’, IEEE Trans. Electron Dev., 2008, 55, (4), pp. 10581066.
    19. 19)
      • 19. Gupta, R., Ballweber, B.M., Allstot, D.J.: ‘Design and optimization of CMOS RF power amplifiers’, IEEE J. Solid-State Circ., 2001, 36, (2), pp. 166175.
    20. 20)
      • 20. Wang, X., Zeng, H., Gunasekaran, D., et al: ‘Multi-objective design and optimization of inductors: a generalized software-driven approach’. 2016 IEEE 17th Workshop Control and Modeling for Power Electronics, 2016, pp. 17.
    21. 21)
      • 21. Cao, Y., Groves, R.A., Huang, X., et al: ‘Frequency-independent equivalent-circuit model for on-chip spiral inductor’, IEEE J. Solid-State Circ., 2003, 38, (3), pp. 419426.
    22. 22)
      • 22. Arcioni, P., Castello, R., Perregrini, L., et al: ‘An innovative modelization of loss mechanism in silicon integrated inductors’, IEEE Trans. Circ. Syst. II: Analog Dig. Sign. Proc., 1999, 46, (12), pp. 14531460.
    23. 23)
      • 23. Yu, W., Bandler, J.W.: ‘Optimization of spiral inductor on silicon using space mapping’. 2006 MTT-S Int. Microwave Symp. Digest, 2006, pp. 10851088.
    24. 24)
      • 24. Liu, T., Zhang, W., Yu, Z.: ‘Modeling of spiral inductors using artificial neural network’. 2005 IEEE Int. Joint Conf. on Neural Networks, 2005, pp. 23532358.
    25. 25)
      • 25. Kurgan, P., Koziel, S., Bandler, J.W.: ‘Low-cost EM-driven surrogate modeling and optimization of planar inductors’. 2015 MTT-S Int. Microwave Symp., 2015, pp. 13.
    26. 26)
      • 26. Koziel, S., Bekasiewicz, A., Kurgan, P.: ‘Rapid multi-objective simulation-driven design of compact microwave circuits’, IEEE Microw. Wireless Comp. Lett., 2015, 25, (5), pp. 277279.
    27. 27)
      • 27. Queipo, N.V., Haftka, R.T., Shyy, W., et al: ‘Surrogate-based analysis and optimization’, Prog. Aerosp. Sci., 2005, 41, (1), pp. 128.
    28. 28)
      • 28. Koziel, S., Bandler, J.W., Madsen, K.: ‘A space mapping framework for engineering optimization: theory and implementation’, IEEE Trans. Microw. Theory Tech., 2006, 54, (10), pp. 37213730.
    29. 29)
      • 29. CST Microwave Studio, ver. 2013. CST AG, Darmstadt, Germany, 2013.
    30. 30)
      • 30. Esteban-Muller, J., Gonzalez-Echevarria, R., Sanchez-Lopez, C.: ‘Multi-objective performance optimization of planar inductors’. 2010 11th Work. Symbolic and Numerical Methods, Modeling and Applications to Circuit Design, 2010, pp. 14.
    31. 31)
      • 31. Kuwahara, Y.: ‘Multiobjective optimization design of Yagi-uda antenna’, IEEE Trans. Antennas Propag., 2005, 53, (6), pp. 19841992.
    32. 32)
      • 32. Afshinmanesh, F., Marandi, A., Shahabadi, M.: ‘Design of a single-feed dual-band dual-polarized printed microstrip antenna using a boolean particle swarm optimization’, IEEE Trans. Antennas Propag., 2008, 53, (7), pp. 18451852.

Related content

This is a required field
Please enter a valid email address