Optimisation of reflection coefficient of microstrip antennas based on KBNN exploiting GPR model

Optimisation of reflection coefficient of microstrip antennas based on KBNN exploiting GPR model

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

When microstrip antennas (MSAs) are optimised, the full-wave electromagnetic simulation takes long time to get the result which is very time consuming. Hence, the knowledge-based neural network (KBNN) is used here to replace the electromagnetic simulation to shorten the calculating time and raise efficiency. However, prior knowledge of KBNN is always obtained by empirical formulas and neural networks, both of them are heavy and complicated. In this study, Gaussian process regression (GPR) is proposed to get the prior knowledge. The modelling of MSA is realised by the prior knowledge input method. The short optimal time and excellent optimal results prove that the proposed KBNN is a fast and effective method for the optimisation of MSAs.


    1. 1)
      • 1. Mehta, A.: ‘Microstrip antenna’, Int. J. Sci. Technol. Res., 2015, 4, (3), pp. 5457.
    2. 2)
      • 2. Singh, V.K., Ali, Z., Ayub, S., et al: ‘Bandwidth optimization of compact microstrip antenna for PCS/DCS/bluetooth application’, Open Eng., 2014, 4, (3), pp. 281286.
    3. 3)
      • 3. Agarwal, K., Nasimuddin Alphones, A.: ‘Triple-band compact circularly polarised stacked microstrip antenna over reactive impedance meta-surface for GPS applications’, IET Microw. Antennas Propag., 2014, 8, (13), pp. 10571065.
    4. 4)
      • 4. Shi, S.J., Ding, W.P.: ‘Radiation pattern reconfigurable microstrip antenna for WiMAX application’, Electron. Lett., 2015, 51, (9), pp. 662664.
    5. 5)
      • 5. Ali1, F.A., Selvan, K.T.: ‘A study of PSO and its variants in respect of microstrip antenna feed point optimization’. Asia Pacific Microwave Conf., 2009, APMC 2009, 2009, pp. 18171820.
    6. 6)
      • 6. Jayasinghe, J.W., Anguera, J., Uduwawala, D.N.: ‘A high-directivity microstrip patch antenna design by using genetic algorithm optimization’, Pier C, 2013, 62, (4), pp. 414416.
    7. 7)
      • 7. Sun, S., Lv, Y., Zhang, J.: ‘The application of genetic algorithm optimization in broadband microstrip antenna design’. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 2010, 2010, pp. 14.
    8. 8)
      • 8. Bose, T., Gupta, N.: ‘Design of an aperture-coupled microstrip antenna using a hybrid neural network’, IET Microw. Antennas Propag., 2012, 6, (6), pp. 470474.
    9. 9)
      • 9. Mishra, R.K., Patnaik, A.: ‘Design of circular microstrip antenna using neural networks’, IETE J. Res., 2015, 44, (1–2), pp. 3539.
    10. 10)
      • 10. Thakare, V.V., Singhal, P., Kushwaha, V.: ‘Calculation of resonating frequency of a rectangular microstrip antenna using artificial neural network’.  IEEE Int. Conf. on Microwave and Millimeter Wave Technology, 2008, pp. 12431245.
    11. 11)
      • 11. Towell, G., Shavlik, J.: ‘Knowledge-based artificial neural networks’, Artif. Intell., 1994, 70, (1/2), pp. 119165.
    12. 12)
      • 12. Khan, T., De, A.: ‘Research article prediction of slot shape and slot size for improving the performance of microstrip antennas using knowledge-based neural networks’, ISM Softw. Eng., 2014, 2014, (5), pp. 110.
    13. 13)
      • 13. Li, C., Xue, L.J., Xu, J.: ‘Knowledge-based artificial neural network models for microstrip radialstub’, Chin. J. Electron., 2001, 29, (12), pp. 16961698.
    14. 14)
      • 14. Wang, B.Z., Zhao, D., Hong, J.: ‘Modeling stripline discontinuities by neural network with knowledge-based neurons’, IEEE Trans. Adv. Packag., 2000, 23, (4), pp. 692698.
    15. 15)
      • 15. Na, W.C., Zhang, Q.J.: ‘Automated knowledge-based neural network modeling for microwave applications’, IEEE Microw. Wirel. Compon. Lett., 2014, 24, (7), pp. 499501.
    16. 16)
      • 16. Marinković, Z., Pronić-Rančić, O., Marković, V.: ‘Small-signal and noise modeling of class of HEMTs using knowledge-based artificial neural networks’, Int. J. RF Microw. Comput. Aided Eng., 2013, 23, (1), pp. 3439.
    17. 17)
      • 17. Rasmussen, C.E., Williams, C.K.I.: ‘Gaussian processes for machine learning (adaptive computation and machine learning)’ (The MIT Press, Cambridge, Massachusetts, USA, 2005).
    18. 18)
      • 18. Jacobs, J.P.: ‘Efficient resonant frequency modeling for dual-band microstrip antennas by Gaussian process regression’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 337341.
    19. 19)
      • 19. Villiers, J.P.D., Jacobs, J.P.: ‘Gaussian process modeling of CPW-fed slot antennas’, Prog. Electromagn. Res., 2009, 98, (4), pp. 233249.
    20. 20)
      • 20. Jacobs, J.P., Koziel, S.: ‘Cost-efficient dual-stage Gaussian process modeling of antennas’. IEEE European Conf. on Antennas and Propagation, 2014.
    21. 21)
      • 21. Rayas-Sanchez, J.E.: ‘EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art’, IEEE Trans. Microw. Theory Tech., 2004, 52, (1), pp. 420435.
    22. 22)
      • 22. Yubo, T.: ‘Hybrid neural network techniques’ (Science Press, Beijing, 2009), pp. 148171(in Chinese).
    23. 23)
      • 23. Sun, S.Y., Lv, Y.H., Zhang, J.L., et al: ‘Design and optimization of UWB antenna based on genetic algprithm’, Chin. J. Radio Sci., 2011, 26, (01), pp. 6266(in Chinese).

Related content

This is a required field
Please enter a valid email address