Pattern reconfigurable ESPAR antenna for vehicle-to-vehicle communications

Pattern reconfigurable ESPAR antenna for vehicle-to-vehicle communications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes an electronically switched parasitic array radiator (ESPAR) antenna at 5.9 GHz to meet the intelligent transportation systems standards. This antenna offers pattern switching capability with three distinct radiation patterns, i.e. one quasi-omni and two directives in opposite directions, by controlling the mutual coupling at the parasitic elements with PIN diode switches. A considerable gain increase of up to 3 dB is achieved in the directive mode, while maintaining a satisfying impedance matching between the switching states. The compact ESPAR antenna is printed on a low loss Rogers dielectric and consists of one active and two parasitic monopoles. S 11 and radiation pattern results are presented, derived from both simulations and measurements, exhibiting a close agreement.


    1. 1)
      • 1. Geissler, M., Scharwies, K., Christ, J.: ‘Intelligent antenna systems for cars’. GeMiC 2014 German Microwave Conf., Aachen, Germany, 2014, pp. 13.
    2. 2)
      • 2. Kwon, O.Y., Song, R., Ma, Y.Z., et al: ‘Integrated MIMO antennas for LTE and V2V applications’. 2016 URSI Asia-Pacific Radio Science Conf. (URSI AP-RASC), Seoul, 2016, pp. 10571060.
    3. 3)
      • 3. Thiel, A., Klemp, O., Paiera, A., et al: ‘In-situ vehicular antenna integration and design aspects for vehicle-to-vehicle communications’. Proc. Fourth European Conf. Antennas and Propagation, Barcelona, Spain, 2010, pp. 15.
    4. 4)
      • 4. Liu, F., Zhang, Z., Chen, W., et al: ‘An endfire beam-switchable antenna array used in vehicular environment’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 195198.
    5. 5)
      • 5. Schack, M.,, Kornek, D., Slottke, E., et al: ‘Analysis of channel parameters for different antenna configurations in vehicular environments’. 2010 IEEE 72nd Vehicular Technology Conf., Ottawa, ON, 2010, pp. 15.
    6. 6)
      • 6. Harrington, R.: ‘Reactivelly controlled directive arrays’, IEEE Trans. Antennas Propag., 1978, 26, (3), pp. 390395.
    7. 7)
      • 7. Ohira, T., Gyoda, K.: ‘Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming’. Proc. IEEE Int. Conf. Phased Array Systems and Technology, May 2000, pp. 101104.
    8. 8)
      • 8. Anbaran, A.G., Mohammadi, A., Abdipour, A.: ‘Capacity enhancement of ad hoc networks using a new single-RF compact beamforming scheme’, IEEE Trans. Antennas Propag., 2015, 63, (11), pp. 50265034.
    9. 9)
      • 9. Liu, H.T., Gao, S., Loh, T.H.: ‘Electrically small and low cost smart antenna for wireless communication’, IEEE Trans. Antennas Propag., 2012, 60, (3), pp. 15401549.
    10. 10)
      • 10. Alrabadi, O.N., Perruisseau-Carrier, J., Kalis, A.: ‘MIMO transmission using a single RF source: theory and antenna design’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 654664.
    11. 11)
      • 11. Sawaya, T., Iigusa, K., Taromaru, M., et al: ‘Reactance diversity: proof-of-concept experiments in an indoor multipath-fading environment with a 5-GHz prototype planar ESPAR antenna’. Proc. IEEE Consumer Communications and Networking Conf., CCNC 2004, Jan 2004, pp. 678680.
    12. 12)
      • 12. Petit, L., Dussopt, L., Laheurte, J.M.: ‘MEMS-switched parasitic-antenna array for radiation pattern diversity’, IEEE Trans. Antennas Propag., 2006, 54, (9), pp. 26242631.
    13. 13)
      • 13. Zhang, S., Huff, G.H., Feng, J., et al: ‘A pattern reconfigurable microstrip parasitic array’, IEEE Trans. Antennas Propag., 2004, 52, (10), pp. 27732776.
    14. 14)
      • 14. Preston, S.L., Thiel, D.V., Lu, J.W., et al: ‘Electronic beam steering using switched parasitic patch elements’, IET Electron. Lett., 1997, 33, (1), pp. 78.
    15. 15)
      • 15. Islam, M.R., Ali, M.: ‘Elevation plane beam scanning of a novel parasitic array radiator antenna for 1900MHz mobile handheld terminals’, IEEE Trans. Antennas Propag., 2010, 58, (10), pp. 33443352.
    16. 16)
      • 16. Yousefbeiki, M., Perruisseau-Carrier, J.: ‘Towards compact and frequency-tunable antenna solutions for MIMO transmission with a single RF chain’, IEEE Trans. Antennas Propag., 2014, 62, (3), pp. 10651073.
    17. 17)
      • 17. RO4725JXR & RO4730JXR Antenna Grade Laminates, Rogers Corporation, Application Note.
    18. 18)
      • 18. CST 2016 3D Electromagnetic Simulation Software,
    19. 19)
      • 19. SMP1320 Series: Low resistance, low capacitance, plastic packaged PIN diodes, Skyworks Solutions Inc., Application Note.

Related content

This is a required field
Please enter a valid email address