http://iet.metastore.ingenta.com
1887

Pulse-preserving characteristics and effective isotropically radiated power spectra of a new ultrawideband dielectric resonator antenna

Pulse-preserving characteristics and effective isotropically radiated power spectra of a new ultrawideband dielectric resonator antenna

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A dielectric resonator antenna (DRA) with a full ground plane and an ultrawideband (UWB) operating bandwidth of 3.1–11.6 GHz is presented. Good return loss over a wide bandwidth is achieved, while the full ground plane directs most of the radiation into the upper hemisphere, significantly reducing undesirable radiation to the lower hemisphere. The measured results confirm a 10-dB return-loss bandwidth of 115%. Time-domain characteristics and effective isotropically radiated power (EIRP) spectra of the antenna are investigated for several types of UWB input pulses. The correlations between the input pulses and the radiated pulses in many directions were found to be excellent when the antenna is excited by a linearly chirped Gaussian pulse or a fifth-order Gaussian pulse. Nevertheless, EIRP spectrum calculations indicate that none of those pulses efficiently fill the Federal Communication Commission UWB mask when applied to this DRA. Hence, a third-order Rayleigh pulse is introduced and tuned to make efficient use of the allowed spectrum limits. Further improvement of pulse performance is investigated by varying antenna design parameters. This DRA is suitable for both impulse radio UWB systems and carrier-based UWB systems.

References

    1. 1)
      • 1. Guha, D., Banerjee, A., Kumar, C., et al: ‘New technique to excite higher-order radiating mode in a cylindrical dielectric resonator antenna’, IEEE Trans. Antennas Propag. Lett., 2014, 13, pp. 1518.
    2. 2)
      • 2. Pan, Y.M., Leung, K.W., Lu, K.: ‘Compact quasi-isotropic dielectric resonator antenna with small ground plane’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 577585.
    3. 3)
      • 3. Sabouni, A., Kishk, A.A.: ‘Dual-polarized broadside thin dielectric resonator antenna for microwave imaging’, IEEE Trans. Antennas Propag. Lett., 2013, 12, pp. 380383.
    4. 4)
      • 4. ‘First report and order in the matter of revision of part 15 of the commission's rules regarding ultra-wideband transmission systems’. ET Docket 98-153 Federal Communication Commission, 2002.
    5. 5)
      • 5. Lapierrei, M., Antar, Y.M., Ittipiboon, A., et al: ‘Ultra wideband monopole/dielectric resonator antenna’, IEEE Microw. Wireless Comp. Lett., 2005, 15, pp. 79.
    6. 6)
      • 6. Chan Y.W. Luk, K.M.: ‘The small UWB hybrid antenna’, IEEE Microw. Opt. Technol. Lett., 2005, 49, (9), pp. 79.
    7. 7)
      • 7. Ahmed, O.M.H., Sebak, A.R., Denidni, T.A.: ‘Compact UWB printed monopole loaded with dielectric resonator antenna’, Electron. Lett., 2011, 47, (1), pp. 78.
    8. 8)
      • 8. Shum, S.M., Luk, K.M.: ‘Stacked annular ring dielectric resonator antenna excited by axi-symmetric coaxial probe’, IEEE Antennas Propag. Mag., 1995, 43, (8), pp. 889892.
    9. 9)
      • 9. Petosa, A., Simons, N., Siushansian, R., et al: ‘Design and analysis of multisegment dielectric resonator antennas’, IEEE Trans. Antennas Propag., 2000, 48, (5), pp. 738742.
    10. 10)
      • 10. Almpanis, G., Fumeaux, C., Vahldieck, R.: ‘Comparison of the performance double-step rectangular dielectric resonator antennas’. Int. Conf. Electromagnetics in Advanced Applications (ICEAA), 2007, pp. 887890.
    11. 11)
      • 11. Leung, K.W., So, K.K.: ‘Theory and experiment of the wideband two-layer hemispherical dielectric resonator antenna’, IEEE Trans. Antennas Propag., 2009, 57, (4), pp. 12801284.
    12. 12)
      • 12. Kishk, A.A., Ahn, B., Kajfez, D.: ‘Broadband stacked dielectric resonator antennas’, Electron. Lett., 1989, 25, (18), pp. 12321233.
    13. 13)
      • 13. Almpanis, G., Fumeaux, C., Vahldieck, R.: ‘The trapezoidal dielectric resonator antenna’, IEEE Trans. Antennas Propag., 2008, 56, (9), pp. 28102816.
    14. 14)
      • 14. Zou, L., Fumeaux, C.: ‘A cross-shaped dielectric resonator antenna for multifunction and polarization diversity applications’, IEEE Antennas Wireless Propag. Lett., 2011, (10), pp. 742745.
    15. 15)
      • 15. Petosa, A., Ittipiboon, A., Thirakoune, S.: ‘Perforated dielectric resonator antennas’, Electron. Lett., 2002, 38, (24), pp. 14931495.
    16. 16)
      • 16. Chair, R., Kishk, A.A., Lee, K.F.: ‘Experimental investigation for wideband perforated dielectric resonator antenna’, Electron. Lett., 2006, 42, (3), pp. 137139.
    17. 17)
      • 17. Li, B., Leung, K.W.: ‘Strip-fed rectangular dielectric resonator antenna with/without a parastic patch’, IEEE Antennas Propag. Mag., 2005, 53, (7), pp. 22002207.
    18. 18)
      • 18. Guha, D., Gupta, B., Antar, Y.M.M.: ‘Hybrid monopole-DRAs using hemispherical/conical-shaped dielectric ring resonators: improved ultrawideband designs’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 393398.
    19. 19)
      • 19. Esselle, K.P., Bird, T.S.: ‘A hybrid-resonator antenna: experimental results’, IEEE Antennas Propag. Mag., 2005, 53, (2), pp. 870871.
    20. 20)
      • 20. Ge, Y., Esselle, K.P., Bird, T.S.: ‘A wideband probe-fed stacked dielectric resonator antenna’, Microw. Opt. Technol. Lett., 2006, 48, pp. 16301633.
    21. 21)
      • 21. Ge, Y., Esselle, K.P., Bird, T.S.: ‘Wideband stacked dielectric resonator antennas’. Int. Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, 2007, pp. 303306.
    22. 22)
      • 22. Ge, Y., Esselle, K.P., Bird, T.S.: ‘Compact dielectric resonator antennas with ultrawide 60–110% bandwidth’, IEEE Trans. Antennas Propag., 2011, 59, (9), pp. 34453448.
    23. 23)
      • 23. Sharma, M., Alomainy, A., Parini, C.: ‘Fidelity pattern analysis of a CPW-Fed miniature UWB antenna using different excitation pulses’, IEEE Antennas Wireless Propag. Lett., 2015, 14, pp. 494498.
    24. 24)
      • 24. Chen, Z.N., Wu, X.H., Li, H.F., et al: ‘Considerations for source pulses and antennas in UWB radio systems’, IEEE Antennas Propag. Mag., 2004, 52, (7), pp. 17391748.
    25. 25)
      • 25. Luk, K.M., Leung, K.W.: ‘Dielectric resonator antennas’, Research Studies Private Ltd, 2004, 1, pp. 177208.
    26. 26)
      • 26. Junker, G., Kishk, A., Glisson, A., et al: ‘Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna’, Electron. Lett., 1994, 30, (3), pp. 177178.
    27. 27)
      • 27. Schantz, H.: ‘The art and science of ultra-wideband antennas’ (Artech House Print, Boston, 2005, 1st edn.).
    28. 28)
      • 28. Abbas, S.M., Ranga, Y., Verma, A.K., et al: ‘A simple ultra wideband printed monopole antenna with high band rejection and wide radiation patterns’, IEEE Trans. Antennas Propag., 2014, 62, (9), pp. 48164820.
    29. 29)
      • 29. Ranga, Y., Matekovits, L., Esselle, K.P., et al: ‘A multioctave frequency selective surface reflector for ultrawideband antennas’, IEEE Antennas Propag. Lett., 2011, 10, pp. 219222.
    30. 30)
      • 30. Lamensdorf, D., Susman, L.: ‘Baseband-pulse-antenna techniques’, IEEE Antennas Propag. Mag., 1994, 36, (1), pp. 2030.
    31. 31)
      • 31. Brooker, G.: ‘Introduction to sensors for ranging and imaging’ (Scitech Publishing, UK, 2009, 1st edn.).
    32. 32)
      • 32. Wu, Q., Jin, R., Geng, J., et al: ‘Pulse preserving capablities of printed circular disk monopole antennas with different grounds of the specified input signal forms’, IEEE Trans. Antennas Propag., 2007, 55, (10), pp. 28662873.
    33. 33)
      • 33. Pozar, D.: ‘Microwave engineering’ (John Wiley & Sons, USA, 2011, 4th edn.).
    34. 34)
      • 34. Mirshafiei, M., Abtahi, M., Larochelleand, L.A.: ‘Pulse shapes that outperform traditional UWB antenna/waveform combinations’. IEEE Global Telecommunications Conf., 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0172
Loading

Related content

content/journals/10.1049/iet-map.2017.0172
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address