http://iet.metastore.ingenta.com
1887

Implementation of UWB BPF with modularised design based on SQR and DCR

Implementation of UWB BPF with modularised design based on SQR and DCR

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Two ultra-wideband (UWB) bandpass filter (BPF) with fractional bandwidths of 30% (1.2 GHz) and 52% (2.5 GHz) are developed and named as UWB BPFs I and II, respectively. Two novel generation approaches of resonant mode (RM) are first presented and analysed, which are named as synchronous-quasi-resonance (SQR) and double-curved-route (DCR), assisting in generating more RMs with the same prototype. First, an admittance prototype and its equivalent network are proposed to realise an UWB with multi-RMs and transmission zeros (TZs), whose detailed generation mechanisms are discussed. Then, two UWB BPFs are implemented employing the same prototype and design procedures. Their distinct characteristics of frequency response show that the one employing SQR and DCR can generate three more in-band RMs and one more TZ in high rejection band over another, which leads to a 1.3 GHz wider bandwidth and 1.0 GHz more harmonic suppression. Finally, a modularised design model is proposed to build the UWB or multi-band filters requiring arbitrary numbers of RMs and TZs.

References

    1. 1)
      • 1. Zhu, L., Sun, S., Menzel, W.: ‘Ultra-wideband (UWB) bandpass filters using multiple-mode resonator’, IEEE Microw. Wirel. Compon. Lett., 2005, 15, (11), pp. 796798.
    2. 2)
      • 2. Chen, C.P., Ma, Z., Anada, T.: ‘Synthesis of ultra-wideband bandpass filter employing parallel-coupled stepped-impedance resonators’, IET Microw. Antennas Propag., 2008, 2, (8), pp. 766772.
    3. 3)
      • 3. Han, L., Wu, K., Chen, X.P.: ‘Compact ultra-wideband bandpass filter using stub-loaded resonator’, Electron. Lett., 2009, 45, (10), pp. 504506.
    4. 4)
      • 4. Mohammadi, B., Valizade, A., Rezaei, P., et al: ‘New design of compact dual band-notch ultra-wideband bandpass filter based on coupled wave canceller inverted T-shaped stubs’, IET Microw. Antennas Propag., 2015, 9, (1), pp. 6472.
    5. 5)
      • 5. Xu, J.: ‘Compact quasi-elliptic response wideband bandpass filter with four transmission zeros’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (3), pp. 169171.
    6. 6)
      • 6. Chen, D., Bu, H., Zhu, L., et al: ‘A differential-mode wideband bandpass filter on slotline multi-mode resonator with controllable bandwidth’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (1), pp. 2830.
    7. 7)
      • 7. Vélez, P., Naqui, J., Fernández-Prieto, A., et al: ‘Ultra-compact (80) differential-mode ultra-wideband (UWB) bandpass filters with common-mode noise suppression’, IEEE Trans. Microw. Theory Tech., 2015, 63, (4), pp. 12721280.
    8. 8)
      • 8. Li, J., Ding, C., Wei, F., et al: ‘Compact UWB BPF with notch band based on SW-HMSIW’, Electron. Lett., 2015, 51, (17), pp. 13381339.
    9. 9)
      • 9. Deng, H.W., Zhao, Y., He, Y., et al: ‘Compact dual-notched balanced UWB BPF with folded triple-mode slotline resonator’, Electron. Lett., 2014, 50, (6), pp. 447449.
    10. 10)
      • 10. Lin, L., Yang, S., Sun, S.J., et al: ‘Ultra-wideband bandpass filter using multi-stub-loaded ring resonator’, Electron. Lett., 2014, 50, (17), pp. 12181220.
    11. 11)
      • 11. Shaman, H., Hong, J.S.: ‘A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes’, IEEE Microw. Wirel. Compon. Lett., 2007, 17, (2), pp. 121123.
    12. 12)
      • 12. Taibi, A., Trabelsi, M., Slimane, A., et al: ‘A novel design method for compact UWB bandpass filters’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (1), pp. 46.
    13. 13)
      • 13. Lan, S.W., Weng, M.H., Hung, C.Y., et al: ‘Design of a compact ultra-wideband bandpass filter with an extremely broad stopband region’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (6), pp. 392394.
    14. 14)
      • 14. Duong, T.H., Kim, I.S.: ‘New elliptic function type UWB BPF based on capacitively coupled open T resonator’, IEEE Trans. Microw. Theory Tech., 2009, 57, (12), pp. 30893098.
    15. 15)
      • 15. Wang, H., Tam, K.W., Ho, S.K., et al: ‘Design of ultra-wideband bandpass filters with fixed and reconfigurable notch bands using terminated cross-shaped resonators’, IEEE Trans. Microw. Theory Tech., 2014, 62, (2), pp. 252265.
    16. 16)
      • 16. Zhang, S.B., Zhu, L.: ‘Compact and high-selectivity microstrip bandpass filters using tri-/quad-mode stub-loaded resonators’, IEEE Microw. Wirel. Compon. Lett., 2011, 21, (10), pp. 522524.
    17. 17)
      • 17. Hong, J.S., Lancaster, M.J.: ‘Microstrip filter for RF/microwave applications’ (Wiley, New York, 2001).
    18. 18)
      • 18. Lee, J.R., Cho, J.H., Yun, S.W.: ‘New compact bandpass filter using microstrip λ/4 resonators with open stub inverter’, IEEE Microw. Guid. Wave Lett., 2000, 10, (12), pp. 526527.
    19. 19)
      • 19. Hong, J.S., Shaman, H., Chun, Y.H.: ‘Dual-mode microstrip open-loop resonators and filters’, IEEE Trans. Microw. Theory Tech., 2007, 55, (8), pp. 17641770.
    20. 20)
      • 20. Xiao, J.K., Li, Y., Ma, J.G., et al: ‘Transmission zero controllable bandpass filters with dual and quad-band’, Electron. Lett., 2015, 51, (13), pp. 10031005.
    21. 21)
      • 21. Zong, B.F., Wang, G.M., Liang, J.G., et al: ‘Compact bandpass filter with two tunable transmission zeros using hybrid resonators’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (2), pp. 8890.
    22. 22)
      • 22. Liao, C.K., Chi, P.L., Chang, C.Y.: ‘Microstrip realization of generalized Chebyshev filters with box-like coupling schemes’, IEEE Trans. Microw. Theory Tech., 2007, 55, (1), pp. 147153.
    23. 23)
      • 23. Chen, C.F., Huang, T.Y., Wu, R.B.: ‘Design of dual- and triple-passband filters using alternately cascaded multiband resonators’, IEEE Trans. Microw. Theory Tech., 2006, 54, (9), pp. 35503558.
    24. 24)
      • 24. Guan, X., Wang, X., Wang, B., et al: ‘Novel hybrid four-mode microstrip bandpass filter using two paralleled stub-loaded resonators’, Microw. Opt. Technol. Lett., 2013, 55, (4), pp. 840845.
    25. 25)
      • 25. Chen, F.C., Chu, Q.X., Tu, Z.H.: ‘Design of compact dual-band bandpass filter using short stub loaded resonator’, Microw. Opt. Technol. Lett., 2009, 51, (4), pp. 959963.
    26. 26)
      • 26. Liu, H., Zhao, Y., Shi, L., et al: ‘Dual-mode dual-band bandpass filter design using open-loop resonators’, Microw. Opt. Technol. Lett., 2012, 54, (10), pp. 23702372.
    27. 27)
      • 27. Wu, X.H., Chu, Q.X., Chen, F.C.: ‘Dual-band bandpass filter with controllable bandwidth and good selectivity by using stub-loaded resonators’, Microw. Opt. Technol. Lett., 2012, 54, (6), pp. 15251528.
    28. 28)
      • 28. Liang, J.G., Wang, C., Kim, N.Y.: ‘Compact and highly selective dual/tri-band BPFs using folded T-shaped stub-loaded resonators for WLAN and WiMAX applications’, Microw. Opt. Technol. Lett., 2016, 58, (2), pp. 312319.
    29. 29)
      • 29. Zhang, B., Liu, Y.: ‘Wideband filtering power divider with high selectivity’, Electron. Lett., 2015, 51, (23), pp. 19501952.
    30. 30)
      • 30. Song, K., Mo, Y., Fan, Y.: ‘Wideband four-way filtering-response power divider with improved output isolation based on coupled lines’, IEEE Microw. Wirel. Compon. Lett., 2014, 24, (10), pp. 674676.
    31. 31)
      • 31. Zhang, X.Y., Wang, K.X., Hu, B.J.: ‘Compact filtering power divider with enhanced second-harmonic suppression’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (9), pp. 483485.
    32. 32)
      • 32. Wang, K.X., Zhang, X.Y., Hu, B.J.: ‘Gysel power divider with arbitrary power ratios and filtering responses using coupling structure’, IEEE Trans. Microw. Theory Tech., 2014, 62, (3), pp. 431440.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0028
Loading

Related content

content/journals/10.1049/iet-map.2017.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address