Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems

Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes the design of a metamaterial planar antenna for multi-octave band operation. The metamaterial unit-cell comprises L-shaped slit which is etched inside a rectangular patch with a grounded inductive spiral. The slit essentially behaves as a series left-handed capacitance and the spiral as a shunt left-handed inductance. The antenna was modelled and optimised for impedance bandwidth, gain and efficiency performance using commercial three-dimensional full-wave electromagnetic simulation tools. The antenna has a measured impedance bandwidth of 6.02 GHz for S 11<−10 dB. This corresponds to a fractional bandwidth of 172.49%, which is higher than multiband planar antennas reported to date. The antenna has a maximum gain and efficiency performance of 3.7 dBi and 73%, respectively, at 3.25 GHz. The physical footprint of the antenna is comparable to other wideband planar antennas reported to date. The overall size of the antenna is 0.037λ 0 × 0.027λ 0 × 0.002λ 0 and 0.25λ 0 × 0.18λ 0 × 0.017λ 0, where λ 0 is free-space wavelength at 0.48 and 3.25 GHz, respectively.


    1. 1)
      • 1. Chang, T.N., Jiang, J.H.: ‘Meandered T-shaped monopole antenna’, IEEE Trans. Antennas Propag., 2009, 57, (12), pp. 39763978.
    2. 2)
      • 2. Augustin, G., Bybi, P.C., Sarin, V.P., et al: ‘A compact dual-band planar antenna for DCS-1900/ PCS/PHS, WCDMA/IMT-2000, and WLAN applications’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 108111.
    3. 3)
      • 3. Liu, W.-C., Hsu, C.-F.: ‘Dual-band CPW-fed Y-shaped monopole antenna for PCS/WLAN application’, Electron. Lett., 2005, 41, pp. 390391.
    4. 4)
      • 4. Manimegalai, B., Raju, S., Abhaikumar, V.: ‘A multifractal cantor antenna for multiband wireless applications’, IEEE Antennas Wirel. Propag. Lett., 2009, 8, pp. 359362.
    5. 5)
      • 5. Hsieh, C.P., Chiu, T.C., Lai, C.H.: ‘Compact dual-band slot antenna at the corner of the ground plane’, IEEE Trans. Antennas Propag., 2009, 57, (10), pp. 34233426.
    6. 6)
      • 6. Liu, W.C., Wu, C.M., Chu, N.C.: ‘A compact CPW-fed slotted patch antenna for dual-band operation’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 595598.
    7. 7)
      • 7. Lee, K.F., Yang, S.L.S., Kishk, A.A.: ‘Dual- and multiband U-slot patch antennas’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 645647.
    8. 8)
      • 8. Caloz, C., Itoh, T.: ‘Electromagnetic metamaterials, transmission line theory and microwave applications’ (Wiley and IEEE Press, USA, 2005).
    9. 9)
      • 9. Ziolkowski, R.W.: ‘An efficient, electrically small antenna designed for VHF and UHF applications’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 217220.
    10. 10)
      • 10. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R.A.: ‘Composite right–left-handed-based antenna with wide applications in very-high frequency–ultra-high frequency bands for radio transceivers’, IET Microw. Antennas Propag., 2015, 9, (15), pp. 17131726.
    11. 11)
      • 11. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadah, R.A.: ‘Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators’, IET Microw. Antennas Propag., 2015, 9, (14), pp. 14871496.
    12. 12)
      • 12. Zhu, J., Eleftheriades, G.V.: ‘Dual-band metamaterial-inspired small monopole antenna for WiFi applications’, Electron. Lett., 2009, 45, (22), pp. 11041106.
    13. 13)
      • 13. Lee, C.-J., Leong, K., Itoh, T.: ‘Composite right/left-handed transmission line based compact resonant antennas for RF module integration’, IEEE Trans. Antennas Propag., 2006, 54, pp. 22832291.
    14. 14)
      • 14. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Sadeghzadeh, R.A., et al: ‘Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets’, Int. J. RF Microw. Comput.-Aided Eng., 2016, 26, (1), pp. 8896.
    15. 15)
      • 15. Alibakhshi-Kenari, M., Naser-Moghadasi, M., Virdee, B.S., et al: ‘Compact antenna based on a composite right/left handed transmission line’, Microw. Opt. Technol. Lett., 2015, 57, (8), pp. 17851788.
    16. 16)
      • 16. Otto, S., Rennings, A., Liebig, T., et al: ‘An energy-based circuit parameter extraction method for CRLH leaky wave antennas’. Proc. of the 4th European Conf. on Antennas and Propagation, 2010, pp. 15.
    17. 17)
      • 17. Balanis, C.A.: ‘Antenna theory and design’ (John Wiley & Sons, Hoboken, 1997).
    18. 18)
      • 18. Alibakhshi-Kenari, M.: ‘Printed planar patch antennas based on metamaterial’, Electron. Lett., 2014, 2, (1), pp. 3742.
    19. 19)
      • 19. Alibakhshi-Kenari, M.: ‘Introducing the new wideband small plate antennas with engraved voids to form new geometries based on CRLH MTM-TLs for wireless applications’, Int. J. Microw. Wirel. Technol., 2014, 6, (6), pp. 629637.
    20. 20)
      • 20. Luo, J., Gong, S., Duan, P., et al: ‘Small-size wideband monopole antenna with CRLH-TL for LTE mobile phone’, Progress Electromagn. Res. C, 2014, 50, pp. 171179.
    21. 21)
      • 21. Abdalla, M.A., Awad, A.A., Hassan, K.M.: ‘Wide band high selective compact metamaterial antenna for 2 GHz wireless applications’. Antennas and Propagation Conf. (LAPC), November 2014, pp. 350354.
    22. 22)
      • 22. Li, Y., Zhang, Z., Zheng, J., et al: ‘Compact heptaband reconfigurable loop antenna for mobile handset’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 11621165.
    23. 23)
      • 23. Lee, C.J., Leong, K.M.H., Itoh, T.: ‘Broadband small antenna for portable wireless application’. Int. Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, iWAT 2008, 2008, pp. 1013.
    24. 24)
      • 24. Yu, C.-C., Huang, M.-H., Lin, L.-K., et al: ‘A compact antenna based on MTM for WiMAX’. Asia-Pacific Microwave Conf., (APMC), Macau-China, December 2008.
    25. 25)
      • 25. Li, L.-W., Li, Y.-N., Yeo, T.S., et al: ‘A broadband and high-gain metamaterial microstrip antenna’, Appl. Phys. Lett., 2010, 96, p. 164101.
    26. 26)
      • 26. Cai, T., Wang, G.-M., Zhang, X.-F., et al: ‘Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials’, IEEE Trans. Antennas Propag., 2015, 63, (5), pp. 23062311.

Related content

This is a required field
Please enter a valid email address