http://iet.metastore.ingenta.com
1887

Advanced multilayer thick-film technology and TFMS, CPW, and SIW up to 180 GHz for cost-effective ceramic-based circuits and modules

Advanced multilayer thick-film technology and TFMS, CPW, and SIW up to 180 GHz for cost-effective ceramic-based circuits and modules

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents the design, accurate characterisation, and performance comparison for multilayer thin-film microstrip (TFMS), coplanar waveguide (CPW), and substrate integrated waveguides (SIW) lines and interconnects for various transverse dimensions, which are fabricated on thin dielectric layers, using advanced ceramic-based photoimageable thick-film technology. The influence of ground-plane width on multilayer finite-ground planar transmission lines (TFMS and CPW) and the influence of cavity dimensions on SIW have been experimentally studied. This includes the variation of characteristic impedance and attenuation with normalised ground-/cavity-width and extending frequency to beyond 110 GHz (180 GHz, for SIW). Contrary to conventional fence-post, metal-filled trenches have been used for SIW, showing high performance (loss of 0.2 dB/mm at 110 GHz, even for a thin dielectric) and suitable for operation beyond 180 GHz, the highest frequency reported for off-chip integration in MCMs. Further, for the first time, comprehensive comparative performances of traditional microstrip, TFMS, CPW, and SIW, in circuit/system design perspective, have been presented for enabling proper selection of transmission media and interconnect with optimum transverse/ground width, and development of compact and high performance millimetre-wave multichip module front-ends economically.

References

    1. 1)
      • 1. Robertson, I.D., Lucyszyn, S.: ‘RFIC and MMIC design and technology’ (IEE Publishing, London, UK, 2001), ISBN 0852967861.
    2. 2)
      • 2. Ju, I., Kim Lee, Y.S., et al: ‘V-band beam-steering ASK transmitter and receiver using BCB-based system-on-package technology on silicon mother board’, IEEE Microw. Wirel. Compon. Lett., 2011, 21, (11), pp. 619621.
    3. 3)
      • 3. Tentzeris, M.M., Laskar, J., Papapolymerou, J., et al: ‘3-D-integrated RF and millimeter-wave functions and modules using liquid crystal polymer (LCP) system-on-package technology’, IEEE Trans. Adv. Packag., 2004, 27, (2), pp. 332340.
    4. 4)
      • 4. Tummala, R.R., Laskar, J.: ‘Gigabit wireless: system-on-a-package technology’, Proc. IEEE, 2004, 92, (2), pp. 376387.
    5. 5)
      • 5. Samanta, K.K., Stephens, D., Robertson, I.D.: ‘Design and performance of a 60 GHz multi-chip-module receiver employing substrate integrated waveguides’, IEE Proc. Microw. Antenna Propag., 2007, 1, pp. 961967.
    6. 6)
      • 6. Sutono, A., Heo, D.H., Chen, Y.E., et al: ‘High-Q LTCC-based passive library for wireless system-on package (SOP) module development’, IEEE Trans. MTT, 2001, 49, pp. 17151724.
    7. 7)
      • 7. Ponchak, G.E., Downey, A.N.: ‘Characterization of thin film microstrip lines on polyimide’, IEEE Trans. Compon. Packag. Manuf. Technol. B, 1998, 21, (2), pp. 171176.
    8. 8)
      • 8. Schnieder, F., Heinrich, W.: ‘Model of thin-film microstrip line for circuit design’, IEEE Trans. Microw. Theory Tech., 2001, 49, pp. 104111.
    9. 9)
      • 9. Ponchak, G.E., Margomenos, A., Katehi, P.B.: ‘Low loss finite width ground plane, thin film microstrip lines on Si wafers’. Silicon Monolithic Integrated Circuits in RF Systems, 2000, pp. 4347.
    10. 10)
      • 10. Lawton, R.A., Anderson, W.T.: ‘Two-layer dielectric microstrip line structure: SiO2 on Si and GaAs on Si: modeling and measurement’, IEEE Trans. Microw. Theory Tech., 1988, 36, (4), pp. 785789.
    11. 11)
      • 11. Ponchak, G.E., Matloubian, M., Katehi, L.P.B.: ‘A measurement-based design equation for the attenuation of MMIC-compatible coplanar waveguides’, IEEE Trans. Microw. Theory Tech., 1999, 47, pp. 241243.
    12. 12)
      • 12. Haroun, I., Wight, J., Plett, C., et al: ‘Experimental characterization of EC-CPW transmission lines and passive components for 60-GHz CMOS radios’. IEEE MTT-S Microwave Symp. Digest, 2010, p. 1.
    13. 13)
      • 13. Samanta, K.K., Robertson, I.D.: ‘Characterization of TFMS and CPW lines and interconnections up to 110 GHz in multilayer photoimageable thick-film technology’. European Microwave Cone, October 2006.
    14. 14)
      • 14. Tang, J., Wu, K.: ‘Co-layered integration and interconnect of planar circuits and nonradiative dielectric (NRD) waveguide’, IEEE Trans. Microw. Theory Tech., 2000, 48, (4), pp. 519524.
    15. 15)
      • 15. Deslandes, D., Wu, K.: ‘Single-substrate integration technique of planar circuits and waveguide filters’, IEEE Trans. Microw. Theory Tech., 2003, 51, (2), pp. 593596.
    16. 16)
      • 16. Tang, H.J., Yang, G.Q., Chen, J.X., et al: ‘Millimeter-wave and terahertz transmission loss of CMOS process-based substrate integrated waveguide’. IEEE Int. Microwave Symp., 2012, pp. 13.
    17. 17)
      • 17. Bozzi, M., Georgiadis, A., Wu, K.: ‘Review of substrate-integrated waveguide circuits and antennas’, IET Microw. Antennas Propag., 2011, 5, pp. 909920.
    18. 18)
      • 18. Lucyszyn, S., Wang, Q.H., Robertson, I.D.: ‘0.1 THz rectangular waveguide on GaAs semi-insulating substrate’, IEE Electron. Lett., 1995, 31, (9), pp. 721722.
    19. 19)
      • 19. Samanta, K.K.: ‘Advanced MCM technology enabling high quality components and highly integrated cost-effective front-end at millimeter-wave and beyond’. Presented at the Int. Microwave Symp., IMS2015, Phoenix, May 2015.
    20. 20)
      • 20. Samanta, K.K., Stephens, D., Robertson, I.D.: ‘Ultrawideband characterisation of photoimageable thick film materials for microwave and millimeter-wave design’. IEEE, IMS Digest, June 2005(CDROM).
    21. 21)
      • 21. Pieters, P., Vaesen, K., Brebels, S., et al: ‘Accurate modeling of high-Q spiral inductors in thin-film multilayer technology for wireless telecommunication applications’, IEEE Trans. Microw. Theroy Tech., 2001, 49, pp. 589599.
    22. 22)
      • 22. Barnwell, P.: ‘Microwave MCM-C utilizing low loss LTCC and photo-patterning processes’, MW J., 1999, 42, p. 5.
    23. 23)
      • 23. Samanta, K.K., Robertson, I.D.: ‘Multilayer photoimageable thick-film: high performance SoP components to systems at mm-wave and beyond’, IEEE Microw. Mag., Feature Article, 2016, 7, pp. 2239.
    24. 24)
      • 24. Samanta, K.K., Robertson, I.D.: ‘Advanced multilayer thick-film technology for cost-effective millimetre-wave multi-chip modules’. IEEE Tenth High Frequency PG Colloq. Dig., UK, September 2005, pp. 1114.
    25. 25)
      • 25. Samanta, K.K., Robertson, I.D.: ‘High performance compact multilayer circular spiral inductors in advanced photoimageable technology’, IEEE Trans. Compon. Packag Manuf. Technol., 2014, 4, (12), pp. 19811988.
    26. 26)
      • 26. Stephens, D., Young, P.R., Robertson, I.D.: ‘Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology’, IEEE Trans. Microw. Theory Tech., 2005, 53, (99), pp. 38323838.
    27. 27)
      • 27. Samanta, K.K.: ‘Advanced photoimagable ceramic based technology: substrate integrated waveguides and passives to multilayer cost-effective MCMs at Mm-wave and beyond’. IMaRC 2013 (IEEE MTTS), New Delhi, December 2013.
    28. 28)
      • 28. Samanta, K.K., Robertson, I.D.: ‘An embedded 60 GHz planar bandpass filter in multilayer advanced thick-film system-in-package technology’, Microw. Opt. Technol. Lett., 2011, 53, pp. 22212224.
    29. 29)
      • 29. Samanta, K.K., Robertson, I.D.: ‘Experimental study of the effect of ground width for millimetre-wave coplanar waveguides in advanced multilayer ceramic technology’, IET Proc. Microw. Antennas Propag., 2012, 6, (12), pp. 13401346.
    30. 30)
      • 30. Wadell, B.C.: ‘Transmission line design handbook’ (Artech House, Norwood, MA, 1991).
    31. 31)
      • 31. Simons, R.N.: ‘Coplanar waveguide circuits, components, and systems’ (John Wiley & Sons, New York, 2001), ISBN: 0-471-16121-7, pp. 1620, 114–118.
    32. 32)
      • 32. Todd, S., Huang, X.T., Bowers, J.E., et al: ‘Fabrication, modelling, and characterization of high-aspect-ratio coplanar waveguide’, IEEE Trans. Microw. Theory Tech., 2010, 58, (12), pp. 260267.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.1065
Loading

Related content

content/journals/10.1049/iet-map.2016.1065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address