access icon free ANN-based design of a versatile millimetre-wave slotted patch multi-antenna configuration for 5G scenarios

This study addresses the modelling of a dual band (28 and 38 GHz), circularly polarised slotted-patch-antenna for highly demanded millimetre wave multi-input multi-output (MIMO)-systems in fifth generation (5G) networks. A computer-aided-design model is derived by means of an artificial neural network (ANN) which allows obtaining the physical dimensions of a single-fed antenna, satisfying both near- and far-field goals, without resorting to time-consuming electromagnetic simulation. This mathematical model can be implemented in any CAD-tool, as demonstrated within the framework of advanced design system. This allows, for the first time, to carry out optimisations of strategic importance for future 5G non-linear-radiating-systems, especially operating at millimetre wave, directly addressing their far-field behaviour. The model performance is validated by some examples and measurement results. A further important advantage of this approach is that the trained ANN-model can be further adopted to fast, but accurately, investigate the complex relationships between antenna layout and its near-field and far-field performance, such as the resonance conditions and the polarisation behaviour. Indeed arbitrary orthogonal-polarisations (LHCP/RHCP) have been achieved by the aid of the ANN-model of the same topology. This result can be adopted to implement a combination of two independent radiation patterns for the antenna pair: this feature is attractive for MIMO applications. This is confirmed by measurements showing antenna-coupling reduction with the MIMO-array exploiting polarisation diversity.

Inspec keywords: telecommunication computing; neural nets; electromagnetic wave polarisation; antenna radiation patterns; CAD; diversity reception; millimetre wave antenna arrays; microstrip antenna arrays; slot antenna arrays; 5G mobile communication

Other keywords: 5G networks; near-field goal; antenna-coupling reduction; dual-band slotted-patch-antenna; far-field goal; highly-demanded millimetre-wave MIMO systems; antenna radiation pattern; millimetre-wave slotted patch multiantenna configuration; artificial neural network; MIMO application; indeed arbitrary orthogonal-polarisation; strategic importance; ANN-based design; frequency 28 GHz; antenna layout; CAD-tool; polarisation diversity; mathematical model; 5G nonlinear-radiating-systems; advanced design system; frequency 38 GHz; ANN-model; time-consuming electromagnetic simulation; far-field behaviour; single-fed antenna; fifth-generation networks; circularly-polarised slotted-patch-antenna; resonance condition; computer-aided-design model; LHCP-RHCP

Subjects: Neural computing techniques; Communications computing; Antenna arrays; Mobile radio systems

References

    1. 1)
      • 22. Masotti, D., Costanzo, A., Del Prete, M., et al: ‘Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system’, IET Microw. Antennas Propag., 2013, 7, (15), pp. 12541263.
    2. 2)
      • 6. Saadat, S., Mosallaei, H., Afshari, E.: ‘Radiation-efficient 60 GHz on-chip dipole antenna realised by reactive impedance metasurface’, IET Microw. Antennas Propag., 2013, 7, (2), pp. 98104.
    3. 3)
      • 12. Qin, P., Guo, Y., Liang, C.: ‘Effect of antenna polarization diversity on MIMO system capacity’, IEEE Antennas Wireless Propag. Lett., 2010, 9, pp. 10921095.
    4. 4)
      • 17. Jacobs, J.: ‘Efficient resonant frequency modelling for dual-band microstrip antennas by Gaussian process regression’, IEEE Antennas Wireless Propag. Lett., 2015, 14, pp. 337341.
    5. 5)
      • 15. Karnfelt, C., Hallbjorner, P., Zirath, H., et al: ‘High gain active microstrip antenna for 60-GHz WLAN/WPAN applications’, IEEE Trans. Antennas Propag., 2006, 54, (6), pp. 25932603.
    6. 6)
      • 10. Aliakbari, H., Abdipour, A., Mirzavand, R., et al: ‘A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication’. Proc. of the European Conf. on IEEE Antennas and Propagation (EUCAP), 2016, pp. 15.
    7. 7)
      • 4. Debin, H., Xiong, Y., Goh, W., et al: ‘130-GHz on-chip meander slot antennas with stacked dielectric resonators in standard CMOS technology’, IEEE Trans. Antennas Propag., 2012, 60, (9), pp. 41024109.
    8. 8)
      • 8. Hongyu, Z., Aryanfar, F.: ‘A Ka-band patch antenna array with improved circular polarization’. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 2013, pp. 15861587.
    9. 9)
      • 14. Han, J., Myung, N.: ‘Novel feed network for circular polarization antenna diversity’, IEEE Antennas Wireless Propag. Lett., 2014, 13, pp. 979982.
    10. 10)
      • 19. Bose, T., Gupta, N.: ‘Design of an aperture-coupled microstrip antenna using a hybrid neural network’, IET Microw. Antennas Propag., 2012, 6, (4), pp. 470474.
    11. 11)
      • 18. Zhongbao, W., Fang, S., Wang, Q., et al: ‘An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners’, IEEE Trans. Antennas Propag., 2012, 60, (12), pp. 59895992.
    12. 12)
      • 25. Mohajer, M., Safavi-Naeini, S., Chaudhuri, K.: ‘Spherical vector wave approach for MIMO antenna decoupling’, IEEE Antennas Wireless Propag. Lett., 2013, 12, pp. 14961499.
    13. 13)
      • 9. Chen, C., Yung, E.: ‘Dual-band circularly-polarized CPW-fed slot antenna with a small frequency ratio and wide bandwidths’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp. 13791384.
    14. 14)
      • 7. Mak, K., Wah, H., Luk, K., et al: ‘Circularly polarized patch antenna for future 5G mobile phones’, IEEE Access, 2014, 2, pp. 15211529.
    15. 15)
      • 3. Hsu, S., Wei, K., Hsu, C., et al: ‘A 60-GHz millimeter-wave CPW-Fed Yagi antenna fabricated by using 0.18-μm CMOS technology’, IEEE Electron Dev. Lett., 2008, 29, (6), pp. 625627.
    16. 16)
      • 16. Sadrossadat, S., Cao, Y., Zhang, Q.: ‘Parametric modelling of microwave passive components using sensitivity-analysis-based adjoint neural-network technique’, IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 17331747.
    17. 17)
      • 2. Rappaport, T., Gutierrez, F., Ben-Dor, E., et al: ‘Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 18501859.
    18. 18)
      • 13. Karamzadeh, S., Kartal, M.: ‘Circularly polarized MIMO tapered slot antenna array for C-band application’, Electron. Lett., 2015, 51, pp. 13941396.
    19. 19)
      • 11. Witvliet, B., Maanen, E., Petersen, G., et al: ‘The importance of circular polarization for diversity reception and MIMO in NVIS propagation’. Proc. of the European Conf. on IEEE Antennas and Propagation (EUCAP), 2014, pp. 27972801.
    20. 20)
      • 1. Andrews, G., Buzzi, S., Choi, W., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    21. 21)
      • 24. Advance Design System (ADS): ‘Agilent Technologies, http://www.keysight.com, 2016.
    22. 22)
      • 21. Chahine, I., Kadi, M., Gaboriaud, E., et al: ‘Characterization and modelling of the susceptibility of integrated circuits to conducted electromagnetic disturbances up to 1 GHz’, IEEE Trans. Electromag. Compat., 2008, 50, (2), pp. 285293.
    23. 23)
      • 26. Qin, Z., Geyi, W., Zhang, M., et al: ‘Printed eight-element MIMO system for compact and thin 5G mobile handset’, Electron. Lett., 2016, 52, (6), pp. 416418.
    24. 24)
      • 5. Jung-Dong, P., Niknejad, A.: ‘Y-band on-chip dual half-width leaky-wave antenna in a Nanoscale CMOS process’, IEEE Antennas Wireless Propag. Lett., 2013, 12, pp. 14761479.
    25. 25)
      • 27. Rizzoli, V., Costanzo, A., Masotti, D., et al: ‘Integration of non-linear, radiation, and propagation CAD techniques for MIMO link design’, Int. J. Microw. Wirel. Technol., 2012, 4, (2), pp. 223232.
    26. 26)
      • 20. Rizzoli, V., Costanzo, A., Masotti, D., et al: ‘Computer-aided optimisation of nonlinear microwave circuits with the aid of electromagnetic simulation’, IEEE Trans. Microw. Theory Technol., 2004, 52, (1), pp. 362377.
    27. 27)
      • 23. CST Microwave Studio’, http://www.cst.com, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0987
Loading

Related content

content/journals/10.1049/iet-map.2016.0987
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading