ANN-based design of a versatile millimetre-wave slotted patch multi-antenna configuration for 5G scenarios

ANN-based design of a versatile millimetre-wave slotted patch multi-antenna configuration for 5G scenarios

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the modelling of a dual band (28 and 38 GHz), circularly polarised slotted-patch-antenna for highly demanded millimetre wave multi-input multi-output (MIMO)-systems in fifth generation (5G) networks. A computer-aided-design model is derived by means of an artificial neural network (ANN) which allows obtaining the physical dimensions of a single-fed antenna, satisfying both near- and far-field goals, without resorting to time-consuming electromagnetic simulation. This mathematical model can be implemented in any CAD-tool, as demonstrated within the framework of advanced design system. This allows, for the first time, to carry out optimisations of strategic importance for future 5G non-linear-radiating-systems, especially operating at millimetre wave, directly addressing their far-field behaviour. The model performance is validated by some examples and measurement results. A further important advantage of this approach is that the trained ANN-model can be further adopted to fast, but accurately, investigate the complex relationships between antenna layout and its near-field and far-field performance, such as the resonance conditions and the polarisation behaviour. Indeed arbitrary orthogonal-polarisations (LHCP/RHCP) have been achieved by the aid of the ANN-model of the same topology. This result can be adopted to implement a combination of two independent radiation patterns for the antenna pair: this feature is attractive for MIMO applications. This is confirmed by measurements showing antenna-coupling reduction with the MIMO-array exploiting polarisation diversity.


    1. 1)
      • 1. Andrews, G., Buzzi, S., Choi, W., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    2. 2)
      • 2. Rappaport, T., Gutierrez, F., Ben-Dor, E., et al: ‘Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 18501859.
    3. 3)
      • 3. Hsu, S., Wei, K., Hsu, C., et al: ‘A 60-GHz millimeter-wave CPW-Fed Yagi antenna fabricated by using 0.18-μm CMOS technology’, IEEE Electron Dev. Lett., 2008, 29, (6), pp. 625627.
    4. 4)
      • 4. Debin, H., Xiong, Y., Goh, W., et al: ‘130-GHz on-chip meander slot antennas with stacked dielectric resonators in standard CMOS technology’, IEEE Trans. Antennas Propag., 2012, 60, (9), pp. 41024109.
    5. 5)
      • 5. Jung-Dong, P., Niknejad, A.: ‘Y-band on-chip dual half-width leaky-wave antenna in a Nanoscale CMOS process’, IEEE Antennas Wireless Propag. Lett., 2013, 12, pp. 14761479.
    6. 6)
      • 6. Saadat, S., Mosallaei, H., Afshari, E.: ‘Radiation-efficient 60 GHz on-chip dipole antenna realised by reactive impedance metasurface’, IET Microw. Antennas Propag., 2013, 7, (2), pp. 98104.
    7. 7)
      • 7. Mak, K., Wah, H., Luk, K., et al: ‘Circularly polarized patch antenna for future 5G mobile phones’, IEEE Access, 2014, 2, pp. 15211529.
    8. 8)
      • 8. Hongyu, Z., Aryanfar, F.: ‘A Ka-band patch antenna array with improved circular polarization’. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 2013, pp. 15861587.
    9. 9)
      • 9. Chen, C., Yung, E.: ‘Dual-band circularly-polarized CPW-fed slot antenna with a small frequency ratio and wide bandwidths’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp. 13791384.
    10. 10)
      • 10. Aliakbari, H., Abdipour, A., Mirzavand, R., et al: ‘A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication’. Proc. of the European Conf. on IEEE Antennas and Propagation (EUCAP), 2016, pp. 15.
    11. 11)
      • 11. Witvliet, B., Maanen, E., Petersen, G., et al: ‘The importance of circular polarization for diversity reception and MIMO in NVIS propagation’. Proc. of the European Conf. on IEEE Antennas and Propagation (EUCAP), 2014, pp. 27972801.
    12. 12)
      • 12. Qin, P., Guo, Y., Liang, C.: ‘Effect of antenna polarization diversity on MIMO system capacity’, IEEE Antennas Wireless Propag. Lett., 2010, 9, pp. 10921095.
    13. 13)
      • 13. Karamzadeh, S., Kartal, M.: ‘Circularly polarized MIMO tapered slot antenna array for C-band application’, Electron. Lett., 2015, 51, pp. 13941396.
    14. 14)
      • 14. Han, J., Myung, N.: ‘Novel feed network for circular polarization antenna diversity’, IEEE Antennas Wireless Propag. Lett., 2014, 13, pp. 979982.
    15. 15)
      • 15. Karnfelt, C., Hallbjorner, P., Zirath, H., et al: ‘High gain active microstrip antenna for 60-GHz WLAN/WPAN applications’, IEEE Trans. Antennas Propag., 2006, 54, (6), pp. 25932603.
    16. 16)
      • 16. Sadrossadat, S., Cao, Y., Zhang, Q.: ‘Parametric modelling of microwave passive components using sensitivity-analysis-based adjoint neural-network technique’, IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 17331747.
    17. 17)
      • 17. Jacobs, J.: ‘Efficient resonant frequency modelling for dual-band microstrip antennas by Gaussian process regression’, IEEE Antennas Wireless Propag. Lett., 2015, 14, pp. 337341.
    18. 18)
      • 18. Zhongbao, W., Fang, S., Wang, Q., et al: ‘An ANN-based synthesis model for the single-feed circularly-polarized square microstrip antenna with truncated corners’, IEEE Trans. Antennas Propag., 2012, 60, (12), pp. 59895992.
    19. 19)
      • 19. Bose, T., Gupta, N.: ‘Design of an aperture-coupled microstrip antenna using a hybrid neural network’, IET Microw. Antennas Propag., 2012, 6, (4), pp. 470474.
    20. 20)
      • 20. Rizzoli, V., Costanzo, A., Masotti, D., et al: ‘Computer-aided optimisation of nonlinear microwave circuits with the aid of electromagnetic simulation’, IEEE Trans. Microw. Theory Technol., 2004, 52, (1), pp. 362377.
    21. 21)
      • 21. Chahine, I., Kadi, M., Gaboriaud, E., et al: ‘Characterization and modelling of the susceptibility of integrated circuits to conducted electromagnetic disturbances up to 1 GHz’, IEEE Trans. Electromag. Compat., 2008, 50, (2), pp. 285293.
    22. 22)
      • 22. Masotti, D., Costanzo, A., Del Prete, M., et al: ‘Genetic-based design of a tetra-band high-efficiency radio-frequency energy harvesting system’, IET Microw. Antennas Propag., 2013, 7, (15), pp. 12541263.
    23. 23)
      • 23. CST Microwave Studio’,, 2015.
    24. 24)
      • 24. Advance Design System (ADS): ‘Agilent Technologies,, 2016.
    25. 25)
      • 25. Mohajer, M., Safavi-Naeini, S., Chaudhuri, K.: ‘Spherical vector wave approach for MIMO antenna decoupling’, IEEE Antennas Wireless Propag. Lett., 2013, 12, pp. 14961499.
    26. 26)
      • 26. Qin, Z., Geyi, W., Zhang, M., et al: ‘Printed eight-element MIMO system for compact and thin 5G mobile handset’, Electron. Lett., 2016, 52, (6), pp. 416418.
    27. 27)
      • 27. Rizzoli, V., Costanzo, A., Masotti, D., et al: ‘Integration of non-linear, radiation, and propagation CAD techniques for MIMO link design’, Int. J. Microw. Wirel. Technol., 2012, 4, (2), pp. 223232.

Related content

This is a required field
Please enter a valid email address