Split quadrilateral miniaturised multiband microstrip patch antenna design for modern communication system

Split quadrilateral miniaturised multiband microstrip patch antenna design for modern communication system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a mixed split quadrilateral multiband microstrip antenna is designed and its measurement results in terms of different parameters are given. The proposed antenna is fed by a 50 Ω microstrip line. FR-4 (Lossy) is used as a substrate to design the recommended antenna which has a condensed structure of 0.23λ × 0.31λ. This antenna operates at C-, X-, Ku-, and K-band with moderate bandwidth because of its design and feedline. This patch antenna is designed to support models with resonances at 6.30, 7.10, 7.50, 8.70, 12.80, 17.0, and 21.30 GHz, respectively. Regarding the proposed split multiband quadrilateral antenna, results are obtained in terms of reflection coefficient, gain and radiation pattern which have admissible values of reflection coefficient of <−10 dB at each resonant frequency and gain >3.0 dB. It has a reflection coefficient is −20.15 dBi and an efficiency of 86%. The prospective antenna has a compact size, good radiation characteristics and good time domain behaviour to mollify the obligation of the modern communication system.


    1. 1)
      • 1. Prasad, K.: ‘Antenna & wave propagation’ (Satya Prakashan, 2011).
    2. 2)
      • 2. Fertas, K., Kimouche, H., Challal, M., et al: ‘Design and optimization of a CPW-fed tri-band patch antenna using genetic algorithms’, ACES Appl. Comput. Electromagn Soc. J., 2015, 30, pp. 754759.
    3. 3)
      • 3. Stutzman, W.L., Thiele, G.A.: ‘Antenna theory and design’ (John Wiley & Sons, Inc., 2012).
    4. 4)
      • 4. Mathur, V., Gupta, M., Zhang, Y.P., et al: ‘Design of microstrip antennas fed by four-microstrip-port waveguide transition with slot radiators’, IEEE Trans. Antennas Propag., 2015, 55, pp. 27692773.
    5. 5)
      • 5. Shakib, M.N., Islam, M.T., Misran, N.: ‘Stacked patch antenna with folded patch feed for ultra-wideband applications’, IET Microw. Antennas Propag., 2010, 4, pp. 14561461.
    6. 6)
      • 6. Behdad, N., Sarabandi, K.: ‘Dual-band reconfigurable antenna with a very wide tunability range’, IEEE Trans. Antennas Propag., 2006, 54, pp. 409416.
    7. 7)
      • 7. Islam, M.M., Islam, M.T., Faruque, M.R.I.: ‘Design of an UWB patch antenna for dual-frequency operations’, Res. J. Appl. Sci. Eng. Technol., 2014, 7, pp. 822825.
    8. 8)
      • 8. Ezuma, M.C., Subedi, S., Pyun, J.Y.: ‘Design of a compact UWB antenna for multi-band wireless applications’. Int. Conf. on Information Networking (ICOIN), 2015, pp. 456461.
    9. 9)
      • 9. Hossain, M.J., Faruque, M.R.I., Islam, M.T.: ‘Design of a patch antenna for ultra-wide band applications’, Microw. Opt. Technol. Lett., 2016, 58, pp. 21522156.
    10. 10)
      • 10. Shinde, P.N., Shinde, J.P.: ‘Design of compact pentagonal slot antenna with bandwidth enhancement for multiband wireless applications’, AEU - Int. J. Electron. Commun., 2015, 69, pp. 14891494.
    11. 11)
      • 11. Prema, N., kumar, A.: ‘Design of multiband microstrip patch antenna for C and X band’, Opt. - Int. J. Light Electron Opt., 2016, 127, pp. 88128818.
    12. 12)
      • 12. Ahsan, M.R., Islam, M.T., Ullah, M.H.: ‘A new low-profile inverted A-shaped patch antenna for multiband operations’, Wirel. Pers. Commun., 2015, 81, pp. 519529.
    13. 13)
      • 13. Dadgarpour, A., Abbosh, A., Jolani, F.: ‘Planar multiband antenna for compact mobile transceivers’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 651654.
    14. 14)
      • 14. Sim, C.Y.D., Cai, F.R., Hsieh, Y.P.: ‘Multiband slot-ring antenna with single and dual-capacitive coupled patch for wireless local area network/worldwide interoperability for microwave access operation’, IET Microw. Antennas Propag., 2011, 5, pp. 18301835.
    15. 15)
      • 15. Wang, P., Wen, G.-J., Huang, Y.-J., et al: ‘Compact CPW-fed planar monopole antenna with distinct triple bands for WiFi/WiMAX applications’, Electron. Lett., 2012, 48, p. 357.
    16. 16)
      • 16. Liu, H.W., Ku, C.H., Yang, C.F.: ‘Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 240243.
    17. 17)
      • 17. AbuTarboush, H.F., Nilavalan, R., Budimir, D., et al: ‘Double U-slots patch antenna for tri-band wireless systems’, Int. J. RF Micro Comput. Eng., 2010, 20, pp. 279285.
    18. 18)
      • 18. Islam, M.M., Islam, M.T., Faruque, M.R.I.: ‘Dual-band operation of a microstrip patch antenna on a Droid 5870 substrate for Ku- and K-bands’, Sci. World J., 2013, pp. 110.

Related content

This is a required field
Please enter a valid email address