Antenna terminals based on ultra-compact retrodirective antenna arrays
- Author(s): Oleksandr Malyuskin 1 and Vincent Fusco 2
-
-
View affiliations
-
Affiliations:
1:
School of Engineering , Ulster University , Shore Rd., Newtownabbey , UK ;
2: The ECIT Institute , Queen's University Belfast , Belfast, BT3 9DT , UK
-
Affiliations:
1:
School of Engineering , Ulster University , Shore Rd., Newtownabbey , UK ;
- Source:
Volume 11, Issue 15,
10
December
2017,
p.
2185 – 2193
DOI: 10.1049/iet-map.2016.0769 , Print ISSN 1751-8725, Online ISSN 1751-8733

Full text loading...
Inspec keywords: signal resolution; electromagnetic wave scattering; radiofrequency power transmission; energy gap; energy conservation; antenna radiation patterns; harmonics; direction-of-arrival estimation; wireless sensor networks; radiofrequency interference; directive antennas; Internet of Things; signal sampling; telecommunication power management; antenna arrays
Other keywords: near-field scattering phenomena; ultra-compact retrodirective antenna arrays; wireless powering systems; wireless network area; oscillatory resonant evanescent harmonics; full-wave EM simulations; ultra-compact AT; ultra-compact antenna terminals; spatial auto-focusing characteristics; far-field radiation patterns; incident electromagnetic signal; superdirective radiation patterns; angular super-resolution; wireless sensor networks; signal-to-noise ratio; overall energy efficiency; power transmission systems; flat metal ground plane; excitation waveform; Internet-of-Things; interference; dense retrodirective antenna array environment; EM band-gap structure; EM pollution; direction-of-arrival information sampling; energy-efficient wireless communication systems; physical effect
Subjects: Signal processing and detection; Wireless sensor networks; Energy conservation; Electromagnetic compatibility and interference; Antenna arrays; Radiowave propagation
References
-
-
1)
-
19. Zhou, Y., Adve, R.S., Hum, S.V.: ‘Design and evaluation of pattern reconfigurable antennas for MIMO applications’, IEEE Trans. Antennas Propag., 2014, 62, (3), pp. 1084–1092.
-
-
2)
-
7. Carvalho, N., Georgiadis, A., Costanzo, A., et al: ‘Wireless power transmission: R&D activities within Europe’, IEEE Trans. Microw. Theory Techn., 2014, 62, (4), pp. 1031–1045.
-
-
3)
-
15. Liu, H.-T., Gao, S., Loh, T.-H.: ‘Electrically small and low cost smart antenna for wireless communication’, IEEE Trans. Antennas Propag., 2012, 60, (3), pp. 1540–1549.
-
-
4)
-
35. Tang, M.-C., Chen, Z., Wang, H., et al: ‘Mutual coupling reduction using meta-structures for wideband, dual-polarized, high-density patch arrays’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 3986–3998.
-
-
5)
-
32. Schelkunoff, S.A.: ‘A mathematical theory of linear arrays’, Bell Syst. Tech. J., 1943, 22, pp. 80–107.
-
-
6)
-
26. Chen, L., Guo, Y.C., Shi, X.W., et al: ‘Overview on the phase conjugation techniques of the retrodirective array’, Int. J. Antennas Propag., 2010, pp. 1–10, Article ID 564357.
-
-
7)
-
20. Malyuskin, O., Fusco, V.: ‘Ultra-compact retrodirective antenna arrays with superdirective radiation patterns’, IEEE Trans. Antennas Propag., 2016, 64, (7), pp. 2923–2935.
-
-
8)
-
4. Harris, M.: ‘Google wants its driverless cars to be wireless too’, IEEE Spectr., 2016, Available at http://spectrum.ieee.org/cars-that-think/transportation/self-driving/google-wants-its-driverless-cars-to-be-wireless-too, accessed August 2017.
-
-
9)
-
14. Fujimoto, K., Henderson, A., Hirasawa, K., et al: ‘Small antennas’ (Wiley, 1987).
-
-
10)
-
18. Haskou, A., Sharaiha, A., Collardey, S.: ‘Design of small parasitic loaded superdirective end-fire antenna arrays’, IEEE Trans. Antennas Propag., 2015, 63, (12), pp. 5456–5464.
-
-
11)
-
21. Hansen, R.C.: ‘Fundamental limitations in antennas’, Proc. IEEE, 1981, 69, (2), pp. 170–182.
-
-
12)
-
5. Cerf, V., Senges, M.: ‘Taking the internet to the next physical level’, Computer, 2016, 49, (2), pp. 80–86.
-
-
13)
-
37. Rohacell substrate datasheet, http://www.rohacell.com/sites/lists/PP-HP/Documents/ROHACELL-Dielectric-Properties-EN.pdf.
-
-
14)
-
36. Yang, F., Rahmat-Samii, Y.: ‘Electromagnetic band gap structures in antenna engineering’ (Cambridge University Press, 2009).
-
-
15)
-
23. Buell, K., Mosallaei, H., Sarabandi, K.: ‘Metamaterial insulator enabled superdirective array’, IEEE Trans. Antennas Propag., 2007, 55, (4), pp. 1074–1085.
-
-
16)
-
22. Mailloux, R.: ‘Phased array antenna handbook’ (Artech House Antenna Library, Norwood, MA, USA, 2005, 2nd edn.).
-
-
17)
-
17. Kokkinos, T., Feresidis, A.P.: ‘Electrically small superdirective endfire arrays of metamaterial-inspired low-profile monopoles’, IEEE Trans. Antennas Wirel. Propag. Lett., 2012, 11, pp. 568–571.
-
-
18)
-
33. Yaru, N.: ‘A note on super-gain antenna arrays’, Proc. IRE, 1951, 39, pp. 1081–1085.
-
-
19)
-
28. Kraus, J.D., Marhefka, R.J.: ‘Antennas’ (McGraw-Hill, New York, 2001, 3rd edn.).
-
-
20)
-
8. Malyuskin, O., Fusco, V., Schuchinsky, A.: ‘Microwave phase conjugation using nonlinearly loaded wire arrays’, IEEE Trans. Antennas Propag., 2006, 54, (1), pp. 192–203.
-
-
21)
-
11. Goldsmith, A.J.: ‘Wireless communications’ (Cambridge University Press, 2005).
-
-
22)
-
34. Best, S.R., Altshuler, E.E., Yaghjian, A.D., et al: ‘An impedance-matched 2-element superdirective array’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 302–305.
-
-
23)
-
27. FEKO – Ports, Sources, Frequency and Meshing. Available at www.feko.info, http://www.antenna-theory.com/tutorial/feko/feko2.php, accessed August 2017.
-
-
24)
-
24. Malyuskin, O., Fusco, V.: ‘Experimental study of electrically compact retrodirective monopole antenna arrays’, IEEE Trans. Antennas Propag., 2017, 65, (5), pp. 2339–2347.
-
-
25)
-
2. Zhao, G.: ‘Wireless sensor networks for industrial process monitoring and control: a survey’, Netw. Protocols Algorithms, 2011, 3, (1), pp. 46–63.
-
-
26)
-
13. Hansen, R.C., Collin, R.E.: ‘Small antenna handbook’ (John Wiley & Sons, Inc., 2011).
-
-
27)
-
31. Fusco, V., Malyuskin, O., Buchanan, N.: ‘Active phase conjugating lens with sub-wavelength resolution capability’, IEEE Trans. Antennas Propag., 2010, 58, (3), pp. 798–808.
-
-
28)
-
29. Kong, J.A.: ‘Electromagnetic wave theory’ (EMW Publishing, 2000).
-
-
29)
-
1. Alemdar, H., Ersoy, C.: ‘Wireless sensor networks for healthcare: a survey’, Comput. Netw., 2010, 54, (15), pp. 2688–2710.
-
-
30)
-
9. Leong, K.M.K.H., Wang, Y., Itoh, T.: ‘A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications’, IEEE Trans. Microw. Theory Techn., 2004, 52, (5), pp. 1479–1489.
-
-
31)
-
12. Chan, P., Fusco, V.: ‘5.8 GHz full duplex amplitude shift keying retrodirective interrogator array’, Microw. Opt. Technol. Lett., 2013, 55, (1), pp. 160–164.
-
-
32)
-
3. Mendes, T., Godina, R., Rodrigues, E., et al: ‘Smart home communication technologies and applications: wireless protocol assessment for home area network resources’, Energies, 2015, 8, pp. 7279–7311, doi:10.3390/en8077279.
-
-
33)
-
16. Yaghjian, A.D., O'Donnell, T.H., Altshuler, E.E., et al: ‘Electrically small supergain end-fire arrays’, Radio Sci., 2008, 43, RS3002, pp. 1–13.
-
-
34)
-
6. Internet of Things, Keysight technologies application notes. Available at www.keysight.com/find/IoT-Insight.
-
-
35)
-
25. Fusco, V., Buchanan, N.: ‘Developments in retrodirective array technology’, IET Microw. Antennas Propag., 2013, 7, (2), pp. 131–140.
-
-
36)
-
10. Saunders, S., Aragón-Zavala, A.: ‘Antennas and propagation for wireless communication systems’ (Wiley, 2007).
-
-
37)
-
30. Hansen, T.B., Yaghjian, A.D.: ‘Plane-wave theory of time-domain fields: near-field scanning applications’ (Wiley IEEE, 1999).
-
-
1)

Related content
