Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free CRLH structure-based high-impedance surface for performance enhancement of planar antennas

A composite right/left-handed (CRLH) structure-based high-impedance surface (HIS) is investigated to improve gain and front-to-back ratio of planar microstrip antennas. An unbalanced CRLH unit cell with a wide band-stop region from 2.0 to 6.44 GHz is modelled and designed for HIS to enhance the antenna performance. A novel via-less structure composed of an interdigital capacitor and four spiral arms is used for the microstrip implementation of the CRLH unit cell. The HIS is formed by the repetition of the unbalanced CRLH unit cells in two-dimensional form. The microstrip patch antennas operating at three different frequencies: 2.34, 3.77 and 5.64 GHz in the band-stop region of the HIS are designed with and without HIS to compare the antenna performances. An increase in gain of 1.91, 2.03 and 0.7 dB and an improvement in the front-to-back ratio of 4.9, 6.0 and 4.2 dB are achieved for the patch antennas operating at 2.34, 3.77 and 5.64 GHz, respectively. To demonstrate the effectiveness of HIS, a patch antenna over HIS is fabricated and measured results show good correlation with the simulated results. An overall antenna size at 2.26 GHz is 0.378λ o × 0.303λ o × 0.012λ o.

References

    1. 1)
      • 5. Caloz, C., Itoh, T.: ‘Novel microwave devices and structures based on the transmission line approach of meta-materials’, IEEE-MTT Int. Symp., 2003, 1, pp. 195198.
    2. 2)
      • 9. Sievenpiper, D., Zhang, L., Jimenez Broas, R.F., et al: ‘High-impedance electromagnetic surfaces with a forbidden frequency band’, IEEE Trans. Microw. Theory Tech., 1999, 47, (11), pp. 20592074.
    3. 3)
      • 29. Jaglan, N., Dev Gupta, S.: ‘Surface waves minimisation in microstrip patch antenna using EBG substrate’. 2015 Int. Conf. on Signal Processing and Communication (ICSC), Noida, 2015, pp. 116121.
    4. 4)
      • 28. Agarwal, K., Nasimuddin Alphones, A.: ‘Tripleband compact circularly polarised stacked microstrip antenna over reactive impedance meta-surface for GPS applications’, IET Microw. Antennas Propag., 2014, 8, (13), pp. 10571065.
    5. 5)
      • 12. de Maagt, P., Gonzalo, R., Vardaxoglou, Y.C., et al: ‘Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications’, IEEE Trans. Antennas Propag., 2003, 51, (10), pp. 26672677.
    6. 6)
      • 13. Lee, Y.J., Yeo, J., Mittra, R., et al: ‘Design of a high-directivity electromagnetic band gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate’, Microw. Opt. Technol. Lett., 2004, 43, (6), pp. 462467.
    7. 7)
      • 15. Llombart, N., Neto, A., Gerini, G., et al: ‘Planar circularly symmetric EBG structures for reducing surface waves in printed antennas’, IEEE Trans. Antennas Propag., 2005, 53, (10), pp. 32103218.
    8. 8)
      • 20. de Dios Ruiz, J., Martinez, F.L., Hinojosa, J.: ‘Novel compact wide-band EBG structure based on tapered 1-D Koch fractal patterns’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 11041107, no..
    9. 9)
      • 27. Ghosh, S., Tran, T.N., Le-Ngoc, T.: ‘Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems’, IEEE Trans. Antennas Propag., 2014, 62, (8), pp. 39853997.
    10. 10)
      • 26. Salar Rahimi, M., Rashed-Mohassel, J., Edalatipour, M.: ‘Radiation properties enhancement of a GSM/WLAN microstrip antenna using a dual band circularly symmetric EBG substrate’, IEEE Trans. Antennas Propag., 2012, 60, (11), pp. 54915494.
    11. 11)
      • 6. Caloz, C., Itoh, T.: ‘Electromagnetic metamaterials: transmission line theory and microwave applications’ (John Wiley & Sons, Inc., 2006), pp. 59125.
    12. 12)
      • 7. Jin, C., Alphones, A.: ‘Leaky-wave radiation behaviour from a double periodic composite right/left-handed substrate integrated waveguide’, IEEE Trans. Antennas Propag., 2012, 60, (4), pp. 17271735.
    13. 13)
      • 11. Yang, F., Rahmat-Samii, Y.: ‘Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications’, IEEE Trans. Antennas Propag., 2003, 51, (10), pp. 29362946.
    14. 14)
      • 23. Zhu, H., Mao, J.: ‘Miniaturized tapered EBG structure with wide stopband and flat passband’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 314317, no..
    15. 15)
      • 10. Gonzalo, R., de Maagt, P., Sorolla, M.: ‘Enhanced patch antenna performance by suppressing surface waves using photonic band gap substrates’, IEEE Trans. Microw. Theory Tech., 1999, 47, (11), pp. 20992104.
    16. 16)
      • 17. Zheng, Q.R., Fu, Y.Q., Yuan, N.C.: ‘A novel compact spiral electromagnetic band-gap (EBG) structure’, IEEE Trans. Antennas Propag., 2008, 56, (6), pp. 16561660.
    17. 17)
      • 30. Amiri, M.A., Balanis, C.A., Birtcher, C.R.: ‘Analysis, design, and measurements of circularly symmetric high-impedance surfaces for loop antenna applications’, IEEE Trans. Antennas Propag., 2016, 64, (2), pp. 618629.
    18. 18)
      • 24. Sarrazin, J., Lepage, A.C., Begaud, X.: ‘Circular high-impedance surfaces characterization’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 260263, no..
    19. 19)
      • 21. Roseline, A.A., Malathi, K., Shrivastav, A.K.: ‘Enhanced performance of a patch antenna using spiral-shaped electromagnetic bandgap structures for high-speed wireless networks’, IET Microw. Antennas Propag., 2011, 5, (14), pp. 17501755.
    20. 20)
      • 18. Yang, G.-M., Xing, X., Daigle, A., et al: ‘Planar annular ring antennas with multilayer self-biased NiCo-ferrite films loading’, IEEE Trans. Antennas Propag., 2010, 58, (3), pp. 648655.
    21. 21)
      • 14. Munk, B.A.: ‘Frequency selective surfaces: theory and design’ (John Wiley & Sons, Hoboken, NJ, USA, 2005).
    22. 22)
      • 8. James, J.R., Hall, P.S., Wood, C.: ‘Microstrip antenna theory and design’ (Peregrinus, London, UK, 1981).
    23. 23)
      • 1. Veselago, V.: ‘The electrodynamics of substances with simultaneously negative values of ε and μ’, Sov. Phys. Usp., 1968, 10, (4), pp. 509514.
    24. 24)
      • 3. Pendry, J.B., Holden, A.J., Robbins, D.J., et al: ‘Low frequency plasmons in thin-wire structures’, J. Phys. Condens. Matter, 1998, 10, pp. 47854809.
    25. 25)
      • 2. Pendry, J.B., Holden, A.J., Stewart, W.J., et al: ‘Extremely low frequency plasmons in metallic mesostructure’, Phys. Rev. Lett., 1996, 76, (25), pp. 47734776.
    26. 26)
      • 22. Honari, M.M., Abdipour, A., Moradi, G.: ‘Bandwidth and gain enhancement of an aperture antenna with modified ring patch’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, (10), pp. 14131416.
    27. 27)
      • 25. Song, Y.J., Sarabandi, K.: ‘Equivalent circuit model for metamaterial-based electromagnetic band-gap isolator’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 13661369, no..
    28. 28)
      • 16. Mosallaei, H., Sarabandi, K.: ‘A compact wide-band EBG structure utilizing embedded resonant circuits’, IEEE Antennas Wirel. Propag. Lett., 2005, 4, pp. 58, no..
    29. 29)
      • 19. Sutinjo, A., Okoniewski, M., Johnston, R.H.: ‘A holographic antenna approach for surface wave control in microstrip antenna applications’, IEEE Trans. Antennas Propag., 2010, 58, (3), pp. 675682.
    30. 30)
      • 4. Smith, D.R., Padilla, W.J., Vier, D.C., et al: ‘Composite medium with simultaneously negative permeability and permittivity’, Phys. Rev. Lett., 2000, 84, (18), pp. 41844187.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0629
Loading

Related content

content/journals/10.1049/iet-map.2016.0629
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address