Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Detection of surface cracks in metals using time-domain microwave non-destructive testing technique

This study theoretically investigates the application of ultra-wideband (UWB) signals in crack detection as a microwave non-destructive testing technique which is well developed in frequency domain in recent decades. To analyse UWB signals, with traditional frequency-domain methods, is needed to cover a wide range of separate frequencies. Another approach is to solve the problem with time-domain (TD) techniques in which fields are assumed as general functions of time instead of single frequency harmonics. The advantages of such TD numerical techniques are first, their applicability for arbitrarily wide-frequency range by one-time execution, and second that they give the potential for detection of small changes in the received signal that corresponds to small but sometimes significant defects of specimen. As it will be shown, using UWB pulses is an efficient way for detection of fine cracks which are of practical importance.

References

    1. 1)
      • 21. Porter, E., Coates, M., Popović, M.: ‘An early clinical study of time-domain microwave radar for breast health monitoring’, IEEE Trans. Biomed. Eng., 2016, 63, (3), pp. 530539.
    2. 2)
      • 23. Stoik, C., Bohn, M., Blackshire, J.: ‘Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy’, NDT&E Int., 2010, 43, (2), pp. 106115.
    3. 3)
      • 12. Tabib-Azar, M., Katz, J.L., LeClair, S.R.: ‘Evanescent microwaves: a novel super-resolution noncontact nondestructive imaging technique for biological applications’, IEEE. Trans. Instrum. Meas., 1999, 48, (6), pp. 11111116.
    4. 4)
      • 19. Chen, F.C., Chew, W.C.: ‘Time-domain ultra-wideband microwave imaging radar system’. Proc. IEEE Instrum. Meas. Conf., May 1998, pp. 648650.
    5. 5)
      • 32. Balanis, C.A.: ‘Advanced engineering electromagnetics’ (John Wiley & Sons, New York, USA, 1989).
    6. 6)
      • 10. Mazlumi, F., Sadeghi, S.H.H., Moini, R.: ‘Interaction of rectangular open-ended waveguides with surface tilted long cracks in metals’, IEEE Trans. Instrum. Meas., 2006, 55, (6), pp. 21912197.
    7. 7)
      • 7. Li, Z., Meng, Z.: ‘A review of the radio frequency non-destructive testing for carbon-fibre composites’, Meas. Sci. Rev., 2016, 16, (2), pp. 6876.
    8. 8)
      • 27. Bennett, C.L.: ‘A technique for computing approximate impulse response for conducting bodies’. PhD thesis, Purdue University, 1968.
    9. 9)
      • 16. Kharkovsky, S., Zoughi, R.: ‘Microwave and millimeter wave nondestructive testing and evaluation – overview and recent advances’, IEEE Instrum. Meas. Mag., 2007, 10, (2), pp. 2638.
    10. 10)
      • 30. Mohammadian, A.H.: ‘Time-dependent dyadic Green's functions for rectangular and circular waveguides’, IEEE Trans. Antennas Propag., 1988, 36, (3), pp. 369375.
    11. 11)
      • 1. Misra, D., Chabbra, M., Epstein, B.R., et al: ‘Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line; test of an improved calibration technique’, IEEE Trans. Microw. Theory Tech., 1990, 38, (1), pp. 814.
    12. 12)
      • 11. Maftooli, H., Karami, H.R., Sadeghi, S.H.H., et al: ‘Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracks in metals’, IEEE Trans. Instrum. Meas., 2012, 61, (9), pp. 23842391.
    13. 13)
      • 13. Zoughi, R.: ‘Defect microwave non-destructive testing and evaluation’ (Kluwer Academic Publishers, Dordrecht, Netherlands, 2000).
    14. 14)
      • 31. Karami, H., Moini, R., Sadeghi, S.H.H., et al: ‘Efficient analysis of shielding effectiveness of metallic rectangular enclosures using unconditionally stable time-domain integral equations’, IEEE Trans. Electromagn. Compat., 2014, 56, (6), pp. 18.
    15. 15)
      • 28. Yee, K.S.: ‘Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media’, IEEE Trans. Antennas Propag., 1966, 14, (3), pp. 302307.
    16. 16)
      • 9. Huber, C., Abiri, H., Ganchev, S., et al: ‘Analysis of the crack characteristic signal using a generalized scattering matrix representation’, IEEE Trans. Microw. Theory Tech., 1997, 45, (4), pp. 477484.
    17. 17)
      • 25. Wexler, A.: ‘Solution of waveguide discontinuities by modal analysis’, IEEE Trans. Microw. Theory Tech., 1967, 15, (9), pp. 508517.
    18. 18)
      • 15. Mehta, P., Chand, K., Narayanswamy, D., et al: ‘Microwave reflectometry as a novel diagnostic tool for detection of skin cancers’, IEEE Trans. Instrum. Meas., 2006, 55, (4), pp. 13091316.
    19. 19)
      • 24. Ospald, F., Zuaghi, W., Beigang, R., et al: ‘Aeronautics composite material inspection with a terahertz time-domain spectroscopy system’, Opt. Eng., 2014, 53, (3), p. 031208.
    20. 20)
      • 18. Nicolson, A.M., Ross, G.F.: ‘Measurement of the intrinsic properties of materials by time domain techniques’, IEEE Trans. Instrum. Meas., 1970, 19, (4), pp. 377382.
    21. 21)
      • 3. Trabelsi, S., Kraszewski, A.W., Nelson, S.: ‘Nondestructive microwave characterization for determining the bulk density and moisture content of shelled corn’, Meas. Sci. Technol., 1998, 9, (9), pp. 15481556.
    22. 22)
      • 5. Han, H.C., Mansueto, E.S.: ‘Thin film inspection with millimeter-wave reflectometer’, Res. Nondestruct. Eval., 1996, 7, (2), pp. 89100.
    23. 23)
      • 33. Weile, D.S., Pisharody, G., Chen, N.-W., et al: ‘A novel scheme for the solution of the time-domain integral equations of electromagnetics’, IEEE Trans. Antennas Propag., 2004, 52, (1), pp. 283295.
    24. 24)
      • 29. Rao, S.M., Wilton, D.R.: ‘Transient scattering by conducting surfaces of arbitrary shape’, IEEE Trans. Antennas Propag., 1991, 39, (1), pp. 5661.
    25. 25)
      • 14. Bucur, V.: ‘Nondestructive characterization and imaging of wood’ (Springer, Berlin, Germany, 2003).
    26. 26)
      • 6. Abu-Khousa, M., Saleh, W., Qaddoumi, N.: ‘Defect imaging and characterization in composite structures using near-field microwave nondestructive testing’, J. Compos. Struct., 2003, 62, (3), pp. 255259.
    27. 27)
      • 34. Helszajn, J.: ‘Ridge waveguides and passive microwave components’ (IET Electromagnetic Waves Series 49, London, UK, 2000).
    28. 28)
      • 20. Zeng, X., Fhager, A., Linner, P., et al: ‘Experimental investigation of the accuracy of an ultrawideband time-domain microwave-tomographic system’, IEEE Trans. Instrum. Meas., 2011, 60, (12), pp. 39393949.
    29. 29)
      • 2. Tabib-Azar, M., Shoemaker, N., Harris, S.: ‘Non-destructive characterization of materials by evanescent microwaves’, Meas. Sci. Technol., 1993, 4, (5), pp. 583590.
    30. 30)
      • 8. Yeh, C., Zoughi, R.: ‘A novel microwave method for detection of long surface cracks in metals’, IEEE Trans. Instrum. Meas., 1994, 43, (5), pp. 719725.
    31. 31)
      • 22. Bulgarevich, D.S., Shiwa, M., Furuya, T., et al: ‘Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation’, Sci. Rep., 2016, 6, pp. 17.
    32. 32)
      • 4. Krupka, J.: ‘Frequency domain complex permittivity measurements at microwave frequencies’, Meas. Sci. Technol., 2006, 17, (6), pp. R55R70.
    33. 33)
      • 26. Harrington, R.F.: ‘Field computation by moment methods’ (Macmillan, New York, USA, 1968).
    34. 34)
      • 17. Nicolson, A.M.: ‘Broad-band microwave transmission characteristics from a single measurement of the transient response’, IEEE Trans. Instrum. Meas., 1968, 17, (4), pp. 395402.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0587
Loading

Related content

content/journals/10.1049/iet-map.2016.0587
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address