access icon free Finite-difference time-domain implementation of tensor impedance boundary conditions

Tensor impedance surfaces are modelled using a linear relationship between the tangential electric and magnetic fields at the surface, namely tensor impedance boundary condition (TIBC). To implement TIBC in the finite-difference time-domain (FDTD) method, a problem arises: TIBC boundary condition requires that the tangential components of the electric and magnetic fields to be co-located in both spatial and time grids. However, this requirement is not compatible with the classical leapfrog Yee's algorithm. In this study, the authors present an algorithm for FDTD implementation of TIBC. Numerical examples are presented to demonstrate the stability, and the accuracy of the proposed approach. Validation is achieved by comparison with analytic solutions.

Inspec keywords: surface impedance; tensors; electric fields; magnetic fields; finite difference time-domain analysis

Other keywords: tangential electric fields; spatial grids; magnetic fields; tensor impedance surfaces; FDTD method; leapfrog Yee algorithm; finite-difference time-domain implementation; tensor impedance boundary conditions; time grids; tangential components; TIBC

Subjects: Algebra; Numerical approximation and analysis; Electrostatics, magnetostatics; Magnetic effects of electric currents; Other numerical methods; Algebra, set theory, and graph theory

References

    1. 1)
      • 10. Taflove, A., Hagness, S.C.: ‘computational electrodynamics: the finite-difference time-domain method’ (Artech House, Boston, Mass, 2005, 3rd edn.).
    2. 2)
      • 18. Feliziani, M., Maradei, F., Tribellini, G.: ‘Field analysis of penetrable conductive shields by the finite-difference time-domain method with impedance network boundary conditions (INBCs)’, IEEE Trans. Electromagn. Compat., 1999, 41, (4), pp. 307319.
    3. 3)
      • 7. Patel, A.M., Grbic, A.: ‘Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces’, IEEE Trans. Microw. Theory Tech., 2014, 62, (5), pp. 11021111.
    4. 4)
      • 2. Fong, B.H., Colburn, J.S., Ottusch, J.J., et al: ‘Scalar and tensor holographic artificial impedance surfaces’, IEEE Trans. Antennas Propag., 2010, 58, (10), pp. 32123221.
    5. 5)
      • 16. Nayyeri, V., Soleimani, M., Ramahi, O.M.: ‘Modeling graphene in the finite-difference time-domain method using a surface boundary condition’, IEEE Trans. Antennas Propag., 2013, 61, (8), pp. 41764182.
    6. 6)
      • 19. Nayyeri, V., Soleimani, M., Ramahi, O.M.: ‘A method to model thin conductive layers in the finite-difference time-domain method’, IEEE Trans. Electromagn. Compat., 2014, 56, (2), pp. 385392.
    7. 7)
      • 15. Nayyeri, V., Soleimani, M., Dehmollaian, M.: ‘Modeling of the perfect electromagnetic conducting boundary in the finite difference time domain method’, Radio Sci., 2013, 48, (4), pp. 453462.
    8. 8)
      • 20. Lindell, I.V., Sihvola, A.H.: ‘Perfect electromagnetic conductor’, J. Electromagn. Waves Appl., 2005, 19, (7), pp. 861869.
    9. 9)
      • 13. Kobidze, G.: ‘Implementation of collocated surface impedance boundary conditions in FDTD’, IEEE Trans. Antennas Propag., 2010, 58, (7), pp. 23942403.
    10. 10)
      • 1. Bilow, H.J.: ‘Guided waves on a planar tensor impedance surface’, IEEE Trans. Antennas Propag., 2003, 51, (10), pp. 27882792.
    11. 11)
      • 12. Beggs, J.H., Luebbers, R.J., Yee, K.S., et al: ‘Finite-difference time-domain implementation of surface impedance boundary conditions’, IEEE Trans. Antennas Propag., 1992, 40, (1), pp. 4956.
    12. 12)
      • 5. Quarfoth, R., Sievenpiper, D.: ‘Artificial tensor impedance surface waveguides’, IEEE Trans. Antennas Propag., 2013, 61, (7), pp. 35973606.
    13. 13)
      • 14. Nayyeri, V., Soleimani, M., Dehmollaian, M.: ‘Implementation of a PEMC boundary condition in the 2-D FDTD technique’. IEEE Int. Symp. Antennas Propagation, Chicago, IL, July 2012.
    14. 14)
      • 21. Lindell, I.V., Sihvola, A.H.: ‘Electromagnetic boundary condition and its realization with anisotropic metamaterial’, Phys. Rev. E, 2009, 79, (2), p. 026604.
    15. 15)
      • 4. Patel, A.M., Grbic, A.: ‘Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS)’, IEEE Trans. Antennas Propag., 2013, 61, (4), pp. 14031413.
    16. 16)
      • 3. Patel, A.M., Grbic, A.: ‘Modeling and analysis of printed-circuit tensor impedance surfaces’, IEEE Trans. Antennas Propag., 2013, 61, (1), pp. 211220.
    17. 17)
      • 23. Taflove, A., Brodwin, M.E.: ‘Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations’, IEEE Trans. Microw. Theory Tech., 1975, 23, (8), pp. 623630.
    18. 18)
      • 6. Quarfoth, R., Sievenpiper, D.: ‘Nanoscattering waveguides based on tensor impedance surfaces’, IEEE Trans. Antennas Propag., 2015, 63, (4), pp. 17461755.
    19. 19)
      • 9. Yee, K.S.: ‘Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media’, IEEE Trans. Antennas Propag., 1966, 14, (3), pp. 302307.
    20. 20)
      • 8. Hoppe, D., Rahmat-Samii, Y.: ‘Impedance boundary conditions in electromagnetics’ (Taylor & Francis, Washington, DC, 1995, 1st edn.).
    21. 21)
      • 11. Maloney, J.G., Smith, G.S.: ‘The use of surface impedance concepts in the finite-difference time-domain method’, IEEE Trans. Antennas Propag., 1992, 40, (1), pp. 3848.
    22. 22)
      • 22. Nayyeri, V., Soleimani, M., Dehmollaian, M.: ‘Analytical and numerical calculation of reflection from a stratified structure backed by a PEMC’. Mediterranean Microwave Symp., Hammamet, Tunisia, September 2011, pp. 134137.
    23. 23)
      • 17. Nayyeri, V., Soleimani, M., Ramahi, O.M.: ‘Wideband modeling of graphene using the finite-difference time-domain method’, IEEE Trans. Antennas Propag., 2013, 61, (12), pp. 61076114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0446
Loading

Related content

content/journals/10.1049/iet-map.2016.0446
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading