access icon free System-level SPICE model for predicting the effects of external incident EMI on a shielded communication system with an antenna

A system-level SPICE model is proposed to predict the effects of external incident electromagnetic interference (EMI) on a shielded communication system with an antenna in this study. First, hybrid techniques are incorporated to develop a frequency-domain equivalent circuit model for the electromagnetic (EM) coupling of the system. The system is divided into an external subsystem and an internal subsystem. A receiving equivalent circuit model is established using the Lorentz reciprocity theorem for the EM coupling of the external subsystem. A transmission equivalent circuit model is established using the segmentation method for the signal transmission in the internal subsystem. Then, in order to handle the non-linear or time-varying circuit devices in the system, the macromodelling technique is employed to convert the frequency-domain equivalent circuit model into a time-domain system-level SPICE model. Both numerical simulation and experimental verification are carried out to validate the proposed model. Based on the system-level SPICE model, bit error rate is calculated to evaluate the performance of the communication system under external incident EMI in the ADS simulator.

Inspec keywords: time-domain analysis; frequency-domain analysis; SPICE; equivalent circuits; electromagnetic coupling; telecommunication computing; antennas; electromagnetic interference

Other keywords: receiving equivalent circuit model; electromagnetic coupling; time-varying circuit devices; macromodelling technique; ADS simulator; Lorentz reciprocity theorem; external incident electromagnetic interference; external incident EMI effect; time-domain system-level SPICE model; system-level SPICE model; frequency-domain equivalent circuit model; nonlinear circuit devices; segmentation method; shielded communication system; signal transmission; transmission equivalent circuit model; external subsystem; internal subsystem; hybrid techniques; antenna

Subjects: Communications computing; Mathematical analysis; Mathematical analysis; Single antennas; Electromagnetic compatibility and interference

References

    1. 1)
      • 18. Antonini, G.: ‘SPICE equivalent circuits of frequency-domain responses’, IEEE Trans. Electromagn. Compat., 2003, 45, (3), pp. 502512.
    2. 2)
      • 13. Duan, X., Rimolo-Donadio, R., Bruns, H., et al: ‘Circular ports in parallel-plate waveguide analysis with isotropic excitations’, IEEE Trans. Electromagn. Compat., 2012, 54, (3), pp. 603612.
    3. 3)
      • 20. Lo, Y., Solomon, D., Richards, W.: ‘Theory and experiment on microstrip antennas’, IEEE Trans. Antennas Propag., 1979, 27, (2), pp. 137145.
    4. 4)
      • 11. Okoshi, T.: ‘Planar circuits for microwaves and lightwaves’ (Springer-Verlag Press, 1985, 1st edn.).
    5. 5)
      • 2. Yuan, W., Li, E.P.: ‘A systematic coupled approach for electromagnetic susceptibility analysis of a shielded device with multilayer circuitry’, IEEE Trans. Electromagn. Compat., 2005, 47, (4), pp. 692700.
    6. 6)
      • 1. Backstrom, M., Lovstrand, K.: ‘Susceptibility of electronic systems to high-power microwaves: summary of test experience’, IEEE Trans. Electromagn. Compat., 2004, 46, (3), pp. 396403.
    7. 7)
      • 19. Gustavsen, B., Semlyen, A.: ‘Enforcing passivity for admittance matrices approximated by rational functions’, IEEE Trans. Power Syst., 2001, 16, (1), pp. 97104.
    8. 8)
      • 14. Rimolo-Donadio, R., Gu, X., Kwark, Y., et al: ‘Physics-based via and trace models for efficient link simulation on multilayer structures Up to 40 GHz’, IEEE Trans. Electromagn. Compat., 2009, 57, (8), pp. 20722083.
    9. 9)
      • 9. Gao, X., Du, Z.: ‘A SPICE model of rectangular microstrip antennas for receiving’, IEEE Trans. Electromagn. Compat., 2014, 56, (1), pp. 8392.
    10. 10)
      • 16. Wang, T., Harrington, R., Mautz, J.: ‘Quasi-static analysis of a microstrip via through a hole in a ground plane’, IEEE Trans. Microw. Theory Tech., 1988, 36, (6), pp. 10081013.
    11. 11)
      • 8. Gao, X., Du, Z.: ‘Modelling of a paraboloid antenna for receiving and its equivalent circuit’, IET Microw. Antennas Propag., 2014, 8, (12), pp. 931936.
    12. 12)
      • 15. Zhang, Y., Fan, J., Selli, G., et al: ‘Analytical evaluation of via-plate capacitance for multilayer printed circuit boards and packages’, IEEE Trans. Microw. Theory Tech., 2008, 56, (9), pp. 21182128.
    13. 13)
      • 6. Yang, H.: ‘Analysis of RF radiation interference on wireless communication systems’, IEEE Antennas Wirel. Propag. Lett., 2003, 2, (1), pp. 126129.
    14. 14)
      • 3. Bagci, H., Yilmaz, A., Jin, J., et al: ‘Fast and rigorous analysis of EMC/EMI phenomena on electrically large and complex cable-loaded structures’, IEEE Trans. Electromagn. Compat., 2007, 49, (2), pp. 361381.
    15. 15)
      • 5. Yang, T., Bayram, Y., Volakis, J.: ‘Hybrid analysis of electromagnetic interference effects on microwave active circuits within cavity enclosures’, IEEE Trans. Electromagn. Compat., 2010, 52, (3), pp. 745748.
    16. 16)
      • 17. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10521061.
    17. 17)
      • 7. Liu, Q.F., Yin, W., Xue, M., et al: ‘Shielding characterization of metallic enclosures with multiple slots and a thin-wire antenna loaded: multiple oblique EMP incidences with arbitrary polarizations’, IEEE Trans. Electromagn. Compat., 2009, 51, (2), pp. 284292.
    18. 18)
      • 4. Bayram, Y., Volakis, J., Myoung, S., et al: ‘High-power EMI on RF amplifier and digital modulation schemes’, IEEE Trans. Electromagn. Compat., 2008, 50, (4), pp. 849860.
    19. 19)
      • 12. Paul, C.R.: ‘Analysis of multiconductor transmission lines’ (Wiley Press, 2007, 2nd edn.).
    20. 20)
      • 10. Dudley, D., Casey, K.: ‘A measure of coupling efficiency for antenna penetrations’, IEEE Trans. Electromagn. Compat., 1991, 33, (1), pp. 19.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0410
Loading

Related content

content/journals/10.1049/iet-map.2016.0410
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading