© The Institution of Engineering and Technology
A systemlevel SPICE model is proposed to predict the effects of external incident electromagnetic interference (EMI) on a shielded communication system with an antenna in this study. First, hybrid techniques are incorporated to develop a frequencydomain equivalent circuit model for the electromagnetic (EM) coupling of the system. The system is divided into an external subsystem and an internal subsystem. A receiving equivalent circuit model is established using the Lorentz reciprocity theorem for the EM coupling of the external subsystem. A transmission equivalent circuit model is established using the segmentation method for the signal transmission in the internal subsystem. Then, in order to handle the nonlinear or timevarying circuit devices in the system, the macromodelling technique is employed to convert the frequencydomain equivalent circuit model into a timedomain systemlevel SPICE model. Both numerical simulation and experimental verification are carried out to validate the proposed model. Based on the systemlevel SPICE model, bit error rate is calculated to evaluate the performance of the communication system under external incident EMI in the ADS simulator.
References


1)

1. Backstrom, M., Lovstrand, K.: ‘Susceptibility of electronic systems to highpower microwaves: summary of test experience’, IEEE Trans. Electromagn. Compat., 2004, 46, (3), pp. 396–403.

2)

2. Yuan, W., Li, E.P.: ‘A systematic coupled approach for electromagnetic susceptibility analysis of a shielded device with multilayer circuitry’, IEEE Trans. Electromagn. Compat., 2005, 47, (4), pp. 692–700.

3)

3. Bagci, H., Yilmaz, A., Jin, J., et al: ‘Fast and rigorous analysis of EMC/EMI phenomena on electrically large and complex cableloaded structures’, IEEE Trans. Electromagn. Compat., 2007, 49, (2), pp. 361–381.

4)

4. Bayram, Y., Volakis, J., Myoung, S., et al: ‘Highpower EMI on RF amplifier and digital modulation schemes’, IEEE Trans. Electromagn. Compat., 2008, 50, (4), pp. 849–860.

5)

5. Yang, T., Bayram, Y., Volakis, J.: ‘Hybrid analysis of electromagnetic interference effects on microwave active circuits within cavity enclosures’, IEEE Trans. Electromagn. Compat., 2010, 52, (3), pp. 745–748.

6)

6. Yang, H.: ‘Analysis of RF radiation interference on wireless communication systems’, IEEE Antennas Wirel. Propag. Lett., 2003, 2, (1), pp. 126–129.

7)

7. Liu, Q.F., Yin, W., Xue, M., et al: ‘Shielding characterization of metallic enclosures with multiple slots and a thinwire antenna loaded: multiple oblique EMP incidences with arbitrary polarizations’, IEEE Trans. Electromagn. Compat., 2009, 51, (2), pp. 284–292.

8)

8. Gao, X., Du, Z.: ‘Modelling of a paraboloid antenna for receiving and its equivalent circuit’, IET Microw. Antennas Propag., 2014, 8, (12), pp. 931–936.

9)

9. Gao, X., Du, Z.: ‘A SPICE model of rectangular microstrip antennas for receiving’, IEEE Trans. Electromagn. Compat., 2014, 56, (1), pp. 83–92.

10)

10. Dudley, D., Casey, K.: ‘A measure of coupling efficiency for antenna penetrations’, IEEE Trans. Electromagn. Compat., 1991, 33, (1), pp. 1–9.

11)

11. Okoshi, T.: ‘Planar circuits for microwaves and lightwaves’ (SpringerVerlag Press, 1985, 1st edn.).

12)

12. Paul, C.R.: ‘Analysis of multiconductor transmission lines’ (Wiley Press, 2007, 2nd edn.).

13)

13. Duan, X., RimoloDonadio, R., Bruns, H., et al: ‘Circular ports in parallelplate waveguide analysis with isotropic excitations’, IEEE Trans. Electromagn. Compat., 2012, 54, (3), pp. 603–612.

14)

14. RimoloDonadio, R., Gu, X., Kwark, Y., , et al: ‘Physicsbased via and trace models for efficient link simulation on multilayer structures Up to 40 GHz’, IEEE Trans. Electromagn. Compat., 2009, 57, (8), pp. 2072–2083.

15)

15. Zhang, Y., Fan, J., Selli, G., et al: ‘Analytical evaluation of viaplate capacitance for multilayer printed circuit boards and packages’, IEEE Trans. Microw. Theory Tech., 2008, 56, (9), pp. 2118–2128.

16)

16. Wang, T., Harrington, R., Mautz, J.: ‘Quasistatic analysis of a microstrip via through a hole in a ground plane’, IEEE Trans. Microw. Theory Tech., 1988, 36, (6), pp. 1008–1013.

17)

17. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 1052–1061.

18)

18. Antonini, G.: ‘SPICE equivalent circuits of frequencydomain responses’, IEEE Trans. Electromagn. Compat., 2003, 45, (3), pp. 502–512.

19)

19. Gustavsen, B., Semlyen, A.: ‘Enforcing passivity for admittance matrices approximated by rational functions’, IEEE Trans. Power Syst., 2001, 16, (1), pp. 97–104.

20)

20. Lo, Y., Solomon, D., Richards, W.: ‘Theory and experiment on microstrip antennas’, IEEE Trans. Antennas Propag., 1979, 27, (2), pp. 137–145.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietmap.2016.0410
Related content
content/journals/10.1049/ietmap.2016.0410
pub_keyword,iet_inspecKeyword,pub_concept
6
6