http://iet.metastore.ingenta.com
1887

Compact frequency reconfigurable filtennas using varactor loaded T-shaped and H-shaped resonators for cognitive radio applications

Compact frequency reconfigurable filtennas using varactor loaded T-shaped and H-shaped resonators for cognitive radio applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, novel compact filtennas with large tunable frequency band are proposed for cognitive radio (CR) applications. Tunability is achieved by integrating a tunable T-shaped and H-shaped bandpass filter with a planar ultra-wideband monopole antenna. The T-shaped filter consists of a microstrip resonator loaded with a stub. The H-shaped filter is composed of two connected microstrip resonators. The proposed tuning technique for both filters is based on centrally loading the stub and the H-shaped with only a single varactor for miniaturisation. Increasing the varactor capacitance results in decreasing the even resonant mode of the resonator without affecting the dominant odd mode. Measurements results show that the proposed T-shaped and H-shaped filtennas are capable of tuning over a wide operating band of 1.68 and 1.73 GHz covering continuous bands for CR communication with 32.9% frequency tuning range (TR) from 4.26 to 5.94 GHz and with 36.7% frequency TR from 3.85 to 5.58 GHz, respectively. Moreover, the radiation patterns are stable over the operating frequency ranges. The frequency characteristics and radiation performance are successfully optimised using 3D full-wave electromagnetic simulator. The fabricated designs are measured for verification purposes. Good agreements are found between simulated and measured results.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2015.0700
Loading

Related content

content/journals/10.1049/iet-map.2015.0700
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address