Efficient integral cylindrical transmission-line matrix modelling of a coaxially loaded probe-coupled cavity
- Author(s): Jugoslav Jokovic 1 ; Tijana Dimitrijevic 1 ; Nebojsa Doncov 1 ; Bratislav Milovanovic 1
-
-
View affiliations
-
Affiliations:
1:
Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia
-
Affiliations:
1:
Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia
- Source:
Volume 9, Issue 8,
05 June 2015,
p.
788 – 794
DOI: 10.1049/iet-map.2014.0587 , Print ISSN 1751-8725, Online ISSN 1751-8733
The transmission-line matrix method enhanced with the compact wire model in a cylindrical grid is used for modelling of a coaxially loaded cylindrical cavity resonator with probes inserted into the cavity. Benefits of using a cylindrical grid instead of rectangular, related to precise modelling of cavity boundaries, a coaxially shaped dielectric sample and radially placed wire elements, are explored. The accuracy of the simulated results is verified by measurements of an experimental model of the cavity-wire structure.
Inspec keywords: cavity resonators; transmission line matrix methods
Other keywords: cavity-wire structure; integral cylindrical transmission-line matrix modelling; cylindrical grid; wire elements; transmission-line matrix method; cavity boundaries; cylindrical cavity resonator; probe-coupled cavity; compact wire model
Subjects: Waveguide and microwave transmission line components; Waveguides and microwave transmission lines; Waveguide and cavity theory
References
-
-
1)
-
6. Christopoulos, C.: ‘The transmission-line modeling method’ (IEEE Press, Piscataway, NJ, 1995).
-
-
2)
-
19. Dimitrijević, T., Joković, J., Milovanović, B.: ‘Cylindrical mesh TLM model of probe-coupled cavity loaded with plan parallel dielectric layers’. Proc. ICEST 2012 Conf., Veliko Tarnovo, Bulgaria, June 2012, vol. 1, pp. 29–32.
-
-
3)
-
22. Joković, J.J., Milovanović, B.D., Doncov, N.S.: ‘Numerical model of transmission procedure in a cylindrical metallic cavity compared with measured results’, Int. J. RF Microw. Comput. Aided Eng., 2008, 18, (4), pp. 295–302 (doi: 10.1002/mmce.20278).
-
-
4)
-
8. Milovanovic, B., Doncov, N.: ‘TLM modeling of the circular cylindrical cavity loaded by lossy dielectric sample of various geometric shapes’, J. Microw. Power Electromagn. Energy (USA), 2002, 37, (4), pp. 237–247.
-
-
5)
-
13. Meliani, H., de Cogan, D., Johns, P.B.: ‘The use of orthogonal curvilinear meshes in TLM models’, Int. J. Numer. Model., Electron. Netw. Devices Fields, 1988, 1, (4), pp. 221–238 (doi: 10.1002/jnm.1660010406).
-
-
6)
-
1. Balanis, C.: ‘Advanced engineering electromagnetics’ (John Wiley & Sons, New York, 1989).
-
-
7)
-
5. Carpes, W.P.Jr., Ferreira, G.S., Raizer, A., Pichon, L., Razek, A.: ‘TLM and FEM methods applied in the analysis of electromagnetic coupling’, IEEE Trans. Magn., 2000, 36, (4), pp. 982–985 (doi: 10.1109/20.877606).
-
-
8)
-
7. Milovanovic, B., Doncov, N., Atanaskovic, A.: ‘Tunnel type microwave applicator analysis using the TLM method’. Proc. CEM-TD 2001, Nottingham, UK, September 2001, pp. 77–84.
-
-
9)
-
9. Joković, J.J., Milovanović, B.D., Ranđelović, T.Ž.: ‘TLM modeling of microwave applicator with an excitation through the waveguide’, Microw. Opt. Technol. Lett., 2006, 48, (11), pp. 2320–2326 (doi: 10.1002/mop.21895).
-
-
10)
-
4. Li, M., Nuebel, J., Drewiniak, J.L.: ‘EMI from cavity modes of shielding enclosures-FDTD modeling and measurements’, IEEE Trans. Electromagn. Compat., 2000, 42, (1), pp. 29–38 (doi: 10.1109/15.831702).
-
-
11)
-
14. Naylor, P., Christopoulos, C.: ‘A new wire node for modeling thin wires in electromagnetic field problems solved by transmission line modeling’, IEEE Trans. Microw. Theory Tech., 1990, 38, (3), pp. 328–330 (doi: 10.1109/22.45355).
-
-
12)
-
21. Dimitrijević, T., Joković, J., Dončov, N., Milovanović, B.: ‘TLM modelling of a microstrip circular antenna in a cylindrical grid’, Microwave Review – published by IEEE MTT-S Chapter of Serbia and Montenegro, December 2013, vol. 19, no. 2, pp. 28–33, (in English).
-
-
13)
-
23. Joković, J.J., Milovanović, B.D., Doncov, N.S.: ‘TLM analysis of a cylindrical metallic cavity excited with a real-feed probe’, Int. J. RF Microw. Comput. Aided Eng., 2006, 16, (4), pp. 346–354 (doi: 10.1002/mmce.20155).
-
-
14)
-
11. Bopp, C.L., Butler, C.M.: ‘Efficient methods for determining the coupling to wires in circular cavities’, IEEE Trans. Electromagn. Compat., 2007, 49, (2), pp. 382–390 (doi: 10.1109/TEMC.2006.890169).
-
-
15)
-
15. Wlodarczyk, A., Johns, D.P.: ‘New wire interface for graded 3-D TLM’, Electron. Lett., 1992, 28, (8), pp. 728–729 (doi: 10.1049/el:19920461).
-
-
16)
-
3. Liu, F., Turner, I., Bialkowski, M.E.: ‘A finite-difference time-domain simulation of power density distribution in a dielectric loaded microwave cavity’, J. Microw. Power Electromagn. Energy (USA), 1994, 29, (3), pp. 138–148.
-
-
17)
-
20. Trenkić, V.: ‘The development and characterization of advanced nodes for TLM method’. PhD thesis, University of Nottingham, Nottingham, 1995.
-
-
18)
-
17. Wlodarczyk, A.J., Trenkic, V., Scaramuzza, R., Christopoulos, C.: ‘A fully integrated multiconductor model for TLM’, IEEE Trans. Microw. Theory Tech., 1998, 46, (12), pp. 2431–2437 (doi: 10.1109/22.739231).
-
-
19)
-
12. Tsang, L., Chang, X., Nuebel, J., Drewiniak, J.L.: ‘Modelling of vias sharing the same antipad in planar waveguide with boundary integral equation and group T-matrix method’, IEEE Trans. Comp. Pack. Manuf. Tech., 2013, 3, (2), pp. 315–327 (doi: 10.1109/TCPMT.2012.2220771).
-
-
20)
-
10. Herring, J.L.: ‘Developments in the transmission-line modelling method for electromagnetic compatibility studies’. PhD thesis, University of Nottingham, UK, 1993.
-
-
21)
-
18. Dimitrijević, T.Ž., Joković, J.J., Milovanović, B.D., Dončov, N.S.: ‘TLM modeling of a probe-coupled cylindrical Cavity based on compact wire model in the cylindrical mesh’, Int. J. RF Microw. Comput. Aided Eng., 2012, 22, (2), pp. 184–192 (doi: 10.1002/mmce.20569).
-
-
22)
-
2. Chan, T.V.C.T., Reader, H.C.: ‘Understanding microwave heating cavities’ (Artech House, Boston, London, 2000).
-
-
1)

Related content
