http://iet.metastore.ingenta.com
1887

Stable and compact multiband frequency selective surfaces with Peano pre-fractal configurations

Stable and compact multiband frequency selective surfaces with Peano pre-fractal configurations

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work presents a fractal design methodology for frequency selective surfaces (FSSs) with Peano pre-fractal patch elements. The proposed FSS structures are composed of periodic arrays of metallic patches printed on a single-layer fibreglass dielectric. The shapes presented by pre-fractal patches allow one to design compact FSSs that behave like dual-polarised band-stop spatial filters. On the other side, the space-filling and self-similarity properties of Peano fractals became possible various configurations for patch elements. An FSS parametric analysis is performed in terms of the fractal iteration-number and cell-size of pre-fractal patches. To validate the used methodology four FSS prototypes are built and tested in the range from 1.0 to 13.5 GHz. Experimental characterisation of the FSS prototypes is accomplished through three different measurement setups with commercial horns and circular monopole microstrip antennas. Results show that the proposed FSS presents most of the desired features for spatial filters: compact design, multiband responses, dual-polarisation, excellent angular stability and facility for reconfiguration.

References

    1. 1)
      • 1. Wu, T.K.: ‘Frequency selective surface and grid array’ (Wiley, 1995).
    2. 2)
      • 2. Vardaxoglou, J.C.: ‘Frequency selective surfaces: analysis and design’ (Wiley, 1997).
    3. 3)
      • 3. Munk, B.A.: ‘Frequency-selective surfaces: theory and design’ (Wiley, 2000).
    4. 4)
      • 4. Raspopoulos, M., Stavrou, S.: ‘Frequency selective buildings through frequency selective surfaces’, IEEE Trans. Antennas Propag., 2011, 59, (8), pp. 29983005 (doi: 10.1109/TAP.2011.2158779).
    5. 5)
      • 5. Kiani, G.I., Olsson, L.G., Karlsson, A., Esselle, K.P., Nilsson, M.: ‘Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings’, IEEE Trans. Antennas Propag., 2011, 59, (2), pp. 520525 (doi: 10.1109/TAP.2010.2096382).
    6. 6)
      • 6. Bossard, J.A., Werner, D.H., Mayer, T.S., Drupp, R.P.: ‘A novel design methodology for reconfigurable frequency selective surfaces using genetic algorithms’, IEEE Trans. Antennas Propag., 2005, 53, (4), pp. 13901400 (doi: 10.1109/TAP.2005.844439).
    7. 7)
      • 7. Werner, D.H., Jackson, T.N., Knowles, G.J.: ‘Pixelized frequency selective surfaces for reconfigurable artificial magnetically conducting ground planes’. United States Patent US 7,420,524 B2, September2008.
    8. 8)
      • 8. Dubrovka, R., Vazquez, J., Parini, C., Moore, D.: ‘Multi-frequency and multi-layer frequency selective surface analysis using modal decomposition equivalent circuit method’, IET Microw. Antennas Propag., 2009, 3, (3), pp. 492500 (doi: 10.1049/iet-map.2008.0120).
    9. 9)
      • 9. Campos, A.L.P.S., D'Assunção, A.G.: ‘Frequency selective surfaces on iso/anisotropic substrates with dielectric losses’, Microw. Opt. Technol. Lett., 2007, 49, (5), pp. 10411044 (doi: 10.1002/mop.22334).
    10. 10)
      • 10. Wang, D.X., Yung, E.K.N., Chen, R.S.: ‘Spectral domain analysis of frequency-selective surfaces on biaxially anisotropic substrate’, IET Microw. Antennas Propag., 2007, 1, (2), pp. 335340 (doi: 10.1049/iet-map:20060003).
    11. 11)
      • 11. Parker, E.A., El Sheikh, A.N.A.: ‘Convoluted array elements and reduced size unit cells for frequency-selective surfaces’, IEE Proc. H, 1991, 138, pp. 1922.
    12. 12)
      • 12. Romeu, J., Rahmat-Samii, Y.: ‘Dual band FSS with fractal elements’, Electron. Lett., 1999, 35, (9), pp. 702703 (doi: 10.1049/el:19990487).
    13. 13)
      • 13. Romeu, J., Rahmat-Samii, Y.: ‘Fractal FSS: A novel dual-band frequency selective surface’, IEEE Trans. Antennas Propag., 2000, 48, (7), pp. 10971105 (doi: 10.1109/8.876329).
    14. 14)
      • 14. Trindade, J.I.A., Silva, P.H.F., Campos, A.L.P.S., D'Assunção, A.G.: ‘Analysis of stop-band frequency selective surfaces with Dürer's pentagon pre-fractals patch elements’, IEEE Trans. Magn., 2011, 47, (5), pp. 15181521 (doi: 10.1109/TMAG.2010.2091112).
    15. 15)
      • 15. Silva, P.H.F., Santos, A.F., Cruz, R.M.S., D'Assunção, A.G.: ‘Dual-band bandstop frequency selective surfaces with Gosper prefractal elements’, Microw. Opt. Technol. Lett., 2012, 54, (3), pp. 771775 (doi: 10.1002/mop.26663).
    16. 16)
      • 16. Campos, A.L.P.S., Oliveira, E.E.C., Silva, P.H.F.: ‘Miniaturization of frequency selective surfaces using fractal Koch curves’, Microw. Opt. Technol. Lett., 2009, 51, (8), pp. 19831986 (doi: 10.1002/mop.24503).
    17. 17)
      • 17. Wang, W.T., Zhang, P.F., Gong, S.X., Lu, B., Ling, J., Wan, T.T.: ‘Compact angularly stable frequency selective surface using hexagonal fractal configurations’, Microw. Opt. Technol. Lett., 2009, 51, (11), pp. 25412544 (doi: 10.1002/mop.24676).
    18. 18)
      • 18. Xue, J.Y., Gong, S.X., Zhang, P.F., Wan, W., Zhang, F.F.: ‘A new miniaturized fractal frequency selective surface with excellent angular stability’, Program. Electromagn. Res. Lett., 2010, 13, pp. 131138 (doi: 10.2528/PIERL10010804).
    19. 19)
      • 19. Werner, D.H., Lee, D.: ‘Design of dual-polarised multiband frequency selective surfaces using fractal elements’, Electron. Lett., 2000, 36, (6), pp. 487488 (doi: 10.1049/el:20000457).
    20. 20)
      • 20. Nóbrega, C.L.: ‘Otimização dos parâmetros de monopolos planares de microfita para aplicações em sistemas de banda ultra larga’. Master thesis, Federal University of Rio Grande do Norte, 2008.
    21. 21)
      • 21. Mandelbrot, B.B.: ‘The fractal geometry of nature’ (Freeman and Co., 1982).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2012.0673
Loading

Related content

content/journals/10.1049/iet-map.2012.0673
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address