http://iet.metastore.ingenta.com
1887

Breast tumour identification based on inverse scattering approach

Breast tumour identification based on inverse scattering approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study introduces an iterative evolutionary method in detection of breast tumour, identification of its size and location. At primary measurement step, a set of antennas capable of transmitting wide-band Gaussian pulses, generated through the chirping technique, is placed around the breast and total wave received by each directional antenna is recorded in a bistatic manner for every cross section of the breast corresponding to a specific height for a full three-dimensional scan. Each set of data for each cross section is then analysed separately. Measured fields are used in an inverse-scattering problem, where the unknown is the tumour. To solve this problem, the finite-difference time-domain technique produces the total field resulted from the same incident wave as in measurement while illuminating an electromagnetic model of the breast, each time having a new tumour specification as a part of an evolutionary algorithm scheme. A comparison between various generated and measured reference data is repeated to reach a minimum cost function that corresponds to a minimum error in identification. Particle swarm optimisation and differential evolution are the two optimisations, each using all field elements of both TE z and TM z modes to reach convergence. The final results show an accurate identification of the tumour by this method.

References

    1. 1)
      • 1. ‘World Cancer Report’, International Agency for Research on Cancer, 2008; Retrieved in, 2011.
    2. 2)
      • 2. Saslow, D., Hannan, J., Osuch, J., et al: ‘Clinical breast examination: practical recommendations for optimizing performance and reporting’, CA Cancer J. Clinicians., 2004, 54, (6), pp. 32744 (doi: 10.3322/canjclin.54.6.327).
    3. 3)
      • 3. Cheng, Z., Xiuzhen, D., Feng, F., Zhenyu, J., Canhua, X.: ‘Breast cancer detection based on multi-frequency EIS measurement’. 29th Annual Int. Conf. of the IEEE EMBS, August, 2007.
    4. 4)
      • 4. Fear, E.C., Li, X., Hagness, S.C., Stuchly, M.A.: ‘Confocal microwave imaging for breast cancer detection: localization of tumours in three dimensions’, IEEE Trans. Biomed. Eng., 2002, 49, (8), pp. 812822 (doi: 10.1109/TBME.2002.800759).
    5. 5)
      • 5. Lazebnik, M., Popovic, D., McCartney, L., et al: ‘A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries’, Phys. Med. Biol., 2007, 52, pp. 26372656 (doi: 10.1088/0031-9155/52/10/001).
    6. 6)
      • 6. Firoozy, N., Saviz, M., Faraji-Dana, R.: ‘A modified device for real-time observation of biological cells exposed to microwaves at GSM frequencies’. 19th Iran. Conf. on Electrical Engineering (ICEE), IEEE Conf. Publications, 2011.
    7. 7)
      • 7. Tortora, G.J., Grabowski, S.R.: ‘Introduction to the Human Body’ (John Wiley & Sons, Inc., New York, 2001, 5th edn.).
    8. 8)
      • 8. Ramsay, D.T., Kent, J.C., Hartmann, R.A., Hartmann, P.E.: ‘Anatomy of the lactating human breast redefined with ultrasound imaging’, J. Anat., 2005, 206, (6), pp. 525534 (doi: 10.1111/j.1469-7580.2005.00417.x).
    9. 9)
      • 9. Sariego, J.: ‘Breast cancer in the young patient’,  Am. Surgeon, 2010, 76, (12), pp. 13971401. PMID 21265355.
    10. 10)
      • 10. Pack, J.-K., Kim, T.-H., Jeon, S.-Ik., Lee, J.-M., Kim, Ki.-C.: ‘Breast cancer detector using microwave tomography image technology’. 2010 Asia-Pac. Int. Symp. on Electromagnetic Compatibility, Beijing, China, 12–16 April 2010.
    11. 11)
      • 11. Kosmas, P., Rappaport, C.M.: ‘A matched-filter FDTD-based time reversal approach for microwave breast cancer detection’, IEEE Trans. Antennas Propag., 2006, 54, (4), pp. 12571264 (doi: 10.1109/TAP.2006.872670).
    12. 12)
      • 12. Taflove, A., Hagness, S.C.: ‘Computational electrodynamics the finite-difference time-domain methodArtech House (2005, 3rd edn.).
    13. 13)
      • 13. Berenger, J.-P.: ‘Three-dimensional perfectly matched layer for the absorption of electromagnetic waves’, J. Comput. Phy., 1996, 127, pp. 363379 (doi: 10.1006/jcph.1996.0181).
    14. 14)
      • 14. Berenger, J.-P.: ‘A perfectly matched layer for the absorption of electromagnetic waves’, J. Comput. Phy., 1994, 114, pp. 185200 (doi: 10.1006/jcph.1994.1159).
    15. 15)
      • 15. Firoozy, N., Tavakoli, A.: ‘Buried crack reconstruction through far-field electromagnetic inverse scattering measurement’, IET E Int.‘in press’, 2013, 54, pp. 8490.
    16. 16)
      • 16. Abubakar, A., Van Den Berg, P.M.: ‘Total variation as a multiplicative constraint for solving inverse problems’, IEEE Trans. Image Process., 2001, 10, (9), pp. 13841392 (doi: 10.1109/83.941862).
    17. 17)
      • 17. Eberhart, R.C., Shi, Y.: ‘Evolving artificial neural networks’. Int. Conf. on Neural Networks and Brain, Beijing, P.R.C., 1998.
    18. 18)
      • 18. Rekanos, I.T.: ‘Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (7), pp. 19671974 (doi: 10.1109/TGRS.2008.916635).
    19. 19)
      • 19. Eberhart, R.C., Shi, Y.: ‘Particle swarm optimization: developments, applications and resources’. Proc. 2001 Congress Evolutionary Computation, 2001, vol. 1.
    20. 20)
      • 20. Robinson, J., Rahmat-Samii, Y.: ‘Particle swarm optimization in electromagnetics’, IEEE Trans. Antennas Propag., 2004, 52, (2), pp. 397407 (doi: 10.1109/TAP.2004.823969).
    21. 21)
      • 21. Rekanos, I.T.: ‘Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (7), pp. 19671974 (doi: 10.1109/TGRS.2008.916635).
    22. 22)
      • 22. Skolnik, M.I.: ‘Radar handbook’, in Edward, C., Farnett George, H. Stevens: ‘RCA electronic systems department GE aerospaceMcGraw-Hill Professional, chap. 10.
    23. 23)
      • 23. Rubæk, T., Meaney, P.M., Meincke, P., Paulsen, K.D.: ‘Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton's method and the CGLS inversion algorithm’, IEEE Trans. Antennas Propag., 2007, 55, (8), pp. 23202331 (doi: 10.1109/TAP.2007.901993).
    24. 24)
      • 24. Zhang, H., Tan, S.Y., Tan, H.S.: ‘A novel method for microwave breast cancer detection’, Prog. Electromagn. Res., 2008, PIER 83, pp. 413434 (doi: 10.2528/PIER08062701).
    25. 25)
      • 25. Cano-Facila, F.J., Burgos, S., Sierra-Castaner, M.: ‘Novel method to improve the signal-to-noise ratio in far-field results obtained from planar near-field measurements’, Universidad Politecnica de Madrid (UPM), ETSI de Telecommunication, AVl Complutense 30, 28040, Madrid, Spain.
    26. 26)
      • 26. Kosmas, P., Rappaport, C.M.: ‘Time reversal with the FDTD method for microwave breast cancer detection’, IEEE Trans. Microw. Theory Technol., 2005, 53, (7), pp. 23172323 (doi: 10.1109/TMTT.2005.850444).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2012.0618
Loading

Related content

content/journals/10.1049/iet-map.2012.0618
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address