http://iet.metastore.ingenta.com
1887

Design of electronically switchable single-to-balanced bandpass low-noise amplifier

Design of electronically switchable single-to-balanced bandpass low-noise amplifier

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this work, the design of novel electronically switchable single-to-balanced bandpass low-noise amplifier (LNA) is proposed so as to improve the level of integration for radio frequency (RF) front-end design. By realising the input matching circuit with an electronically switchable bandpass filter and the output matching circuit as a bandpass balun, the LNA can also exhibit the functions of RF switch, bandpass filter and balun simultaneously. In this way, more compact circuit size and less mismatch loss can then be obtained in RF front-end design. To demonstrate the performance and effectiveness of the proposed design method, a 2-GHz electronically switchable single-to-balanced bandpass LNA is implemented on printed circuit board using packaged E-pHEMT transistor.

References

    1. 1)
      • 1. Adams, K.D., Ho, R.Y.C.: ‘Active filters for UHF and microwave frequencies’, IEEE Trans. Microw. Theory Tech., 1969, MTT-17, (9), pp. 662670 (doi: 10.1109/TMTT.1969.1127034).
    2. 2)
      • 2. Snyder, R.V., Bozarth, D.L.: ‘Analysis and design of a microwave transistor active filter’, IEEE Trans. Microw. Theory Tech., 1970, MTT-18, (1), pp. 29 (doi: 10.1109/TMTT.1970.1127126).
    3. 3)
      • 3. Chang, C.-Y., Itoh, T.: ‘Microwave active filters based on coupled negative resistance method’, IEEE Trans. Microw. Theory Tech., 1990, 38, (12), pp. 18791884 (doi: 10.1109/22.64569).
    4. 4)
      • 4. Ito, M., Maruhashi, K., Kishimoto, S., Ohata, K.: ‘60-GHz-band coplanar MMIC active filters’, IEEE Trans. Microw. Theory Tech., 2004, 52, (3), pp. 743750 (doi: 10.1109/TMTT.2004.823531).
    5. 5)
      • 5. Fan, K.-W., Weng, C.-C., Tsai, Z.-M., Wang, H., Jeng, S.-K.: ‘K-band MMIC active band-pass filters’, IEEE Microw. Wirel. Compon. Lett., 2005, 15, (1), pp. 1921 (doi: 10.1109/LMWC.2004.840961).
    6. 6)
      • 6. Tzuang, C.-K.C., Wu, H.-H., Wu, H.-S., Chen, J.: ‘CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band’, IEEE Trans. Microw. Theory Tech., 2006, 54, (12), pp. 45484555 (doi: 10.1109/TMTT.2006.881507).
    7. 7)
      • 7. Lee, M.-L., Wu, H.-S., Tzuang, C.-K.C.: ‘1.58-GHz third-order CMOS active bandpass filter with improved passband flatness’, IEEE Trans. Microw. Theory Tech., 2011, 59, (9), pp. 22752284 (doi: 10.1109/TMTT.2011.2160196).
    8. 8)
      • 8. Chen, K.-K.M., Chan, H.-Y.: ‘Noise performance of negative-resistance compensated microwave bandpass filters – theory and experiments’, IEEE Trans. Microw. Theory Tech., 2001, 49, (5), pp. 924927 (doi: 10.1109/22.920150).
    9. 9)
      • 9. Chun, Y.-H., Lee, J.-R., Yun, S.-W., Rhee, J.-K.: ‘Design of an RF low-noise bandpass filter using active capacitance circuit’, IEEE Trans. Microw. Theory Tech., 2005, 53, (2), pp. 687695 (doi: 10.1109/TMTT.2004.840565).
    10. 10)
      • 10. Chung, M.-S., Kim, I.-S., Yun, S.-W.: ‘Design of an RF low-noise bandpass filter using active device reduction technique’, IEEE Microw. Wirel. Compon. Lett., 2007, 17, (3), pp. 196198 (doi: 10.1109/LMWC.2006.890470).
    11. 11)
      • 11. Schwab, W., Menzel, W.: ‘A low-noise active bandpass filter’, IEEE Microw. Guid. Wave Lett., 1993, 3, (1), pp. 12 (doi: 10.1109/75.180671).
    12. 12)
      • 12. Wu, C.-Y., Hsiao, S.-Y.: ‘The design of a 3-V 900-MHz CMOS bandpass amplifier’, IEEE J. Solid-State Circuits, 1997, 32, (2), pp. 159168 (doi: 10.1109/4.551907).
    13. 13)
      • 13. Sabouri, S.F.: ‘A GaAs MMIC active filter with low noise and high gain’. IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, United States, June 1998, pp. 11771180.
    14. 14)
      • 14. Chun, Y.-H., Yun, S.-W., Rhee, J.-K.: ‘Active impedance inverter: analysis and its application to the bandpass filter design’. IEEE MTT-S Int. Microwave Symp. Digest., Seattle, United States, June 2002, pp. 19111914.
    15. 15)
      • 15. Darcel, L., Duême, P., Funck, R., Alquié, G.: ‘New MMIC approach for low noise high order active filters’. IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, United States, June 2005, pp. 787790.
    16. 16)
      • 16. Bergeras, F., Dueme, P., Plaze, J.-P., Darcel, L., Jarry, B., Campovecchio, M.: ‘Novel MMIC architectures for tunable microwave wideband active filters’. IEEE MTT-S Int. Microwave Symp. Digest., Anaheim, United States, May 2010, pp. 13561359.
    17. 17)
      • 17. Ismail, A., Abidi, A.A.: ‘A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network’, IEEE J. Solid-State Circuits, 2004, 39, (12), pp. 22692277 (doi: 10.1109/JSSC.2004.836344).
    18. 18)
      • 18. Bevilacqua, A., Niknejad, A.M.: ‘An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers’, IEEE J. Solid-State Circuits, 2004, 39, (12), pp. 22592268 (doi: 10.1109/JSSC.2004.836338).
    19. 19)
      • 19. Yeung, L.K., Wu, K.L.: ‘An LTCC balanced-to-unbalanced extracted-pole bandpass filter with complex load’, IEEE Trans. Microw. Theory Tech., 2006, 54, (4), pp. 15121518 (doi: 10.1109/TMTT.2006.871363).
    20. 20)
      • 20. Wu, C.H., Wang, C.H., Chen, S.Y., Chen, C.H.: ‘Balanced-to-unbalanced bandpass filters and the antenna application’, IEEE Trans. Microw. Theory Tech., 2008, 56, (11), pp. 24742482 (doi: 10.1109/TMTT.2008.2005888).
    21. 21)
      • 21. Tsai, C.-L., Lin, Y.-S.: ‘Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology’, IEEE Trans. Microw. Theory Tech., 2008, 56, (12), pp. 29022912 (doi: 10.1109/TMTT.2008.2007186).
    22. 22)
      • 22. Tsai, C.-L., Lin, Y.-S.: ‘Analysis and design of single-to-balanced combline bandpass filters with two independently controllable transmission zeros in LTCC technology’, IEEE Trans. Microw. Theory Tech., 2010, 58, (11), pp. 28782887 (doi: 10.1109/TMTT.2010.2079130).
    23. 23)
      • 23. Guyette, A.C.: ‘Alternative architectures for narrowband varactor tuned bandpass filters’. Proc. 4th European Microwave Integrated Circuits Conf., Rome, Italy, September 2009, pp. 475478.
    24. 24)
      • 24. Welch, B., Kornegay, K.T., Park, H.-M., Laskar, J.: ‘A 20 GHz low-noise amplifier with active balun in a 0.25-μm SiGe BICMOS technology’, IEEE J. Solid-State Circuits, 2005, 40, (10), pp. 20922097 (doi: 10.1109/JSSC.2005.854603).
    25. 25)
      • 25. Jung, K., Eisenstadt, W.R., Fox, R.M., Ogden, A.W., Yoon, J.: ‘Broadband active balun using combined cascode–cascade configuration’, IEEE Trans. Microw. Theory Tech., 2008, 56, (8), pp. 17901796 (doi: 10.1109/TMTT.2008.927306).
    26. 26)
      • 26. Blaakmeer, S.C., Klumperink, E.A.M., Leenaerts, D.M.W., Nauta, B.: ‘Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling’, IEEE J. Solid-State Circuits, 2008, 43, (6), pp. 13411350 (doi: 10.1109/JSSC.2008.922736).
    27. 27)
      • 27. Im, D., Nam, I., Lee, K.: ‘A CMOS active feedback balun-LNA with high IIP2 for wideband digital TV receivers’, IEEE Trans. Microw. Theory Tech., 2010, 58, (12), pp. 35663579.
    28. 28)
      • 28. Chen, K., Liu, X., Chappell, W.J., Peroulis, D.: ‘Co-design of power amplifier and narrowband filter using high-Q evanescent-mode cavity resonator as the output matching network’. IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, United States, June, 2011.
    29. 29)
      • 29. Lin, Y.-S., Wang, P.-C., You, C.-W., Chang, P.-Y.: ‘New designs of bandpass diplexer and switchplexer based on parallel-coupled bandpass filters’, IEEE Trans. Microw. Theory Tech., 2010, 58, (11), pp. 34173426.
    30. 30)
      • 30. Matthaei, G.L., Young, L., Jones, E.M.T.: ‘Microwave filter, impedance-matching networks, and coupling structures’ (Artech House, 1980).
    31. 31)
      • 31. Wenzel, R.J.: ‘Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth’, IEEE Trans. Microw. Theory Tech., 1971, 19, (8), pp. 678686 (doi: 10.1109/TMTT.1971.1127609).
    32. 32)
      • 32. Tang, C.-W.: ‘Synthesis of the low-temperature co-fired ceramic bandpass filters and diplexer with transmission zeros’, IET Microw. Antennas Propag., 2008, 2, (1), pp. 102108 (doi: 10.1049/iet-map:20070093).
    33. 33)
      • 33. Shaeffer, D.K., Lee, T.H.: ‘A 1.5 V, 1.5 GHz CMOS low noise amplifier’, IEEE J. Solid-State Circuits, 1997, 32, (5), pp. 745759 (doi: 10.1109/4.568846).
    34. 34)
      • 34. Sato, R., Cristal, E.G.: ‘Simplified analysis of coupled transmission-line networks’, IEEE Trans. Microw. Theory Tech., 1970, MTT-18, (3), pp. 122131 (doi: 10.1109/TMTT.1970.1127172).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2012.0426
Loading

Related content

content/journals/10.1049/iet-map.2012.0426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address