access icon free Time-domain techniques in microwave circuit simulation

Microwave circuit simulation has always posed particular difficulties especially in highly non-linear applications because of the presence of distributed or electromagnetic structures, which are usually passive and linear, but difficult to incorporate effectively in time-domain analysis. A variety of specialised techniques has evolved to cope with this situation with reasonable success. In recent years, microwave systems are becoming more integrated and complex and often involve ‘mixed-signals’ that may operate over a very wide range of time scales, creating new simulation challenges. This study reviews the issues involved and suggests a practical paradigm for generalised time-domain simulation of microwave circuits.

Inspec keywords: time-domain analysis; electromagnetic devices; microwave circuits; circuit simulation

Other keywords: mixed-signals; microwave circuit simulation; microwave systems; electromagnetic structures; time-domain techniques; generalised time-domain simulation; reasonable success; time-domain analysis; simulation challenges; nonlinear applications; distributed structures

Subjects: Mathematical analysis; Computer-aided circuit analysis and design; Microwave circuits and devices

References

    1. 1)
      • 18. Oliveira, J.F., Pedro, J.C.: ‘A multiple-line double multi-rate shooting technique for the simulation of heterogeneous RF circuits’, IEEE Trans. MTT, 2009, 57, pp. 421429.
    2. 2)
      • 4. Steer, M.: ‘Microwave and RF design: a systems approach’ (Scitech Publishing Inc, Raleigh NC, USA, 2010).
    3. 3)
      • 1. Nagel, L.W., Pederson, D.O.: ‘SPICE (Simulation Program with Integrated Circuit Emphasis)’ (Memorandum No. ERL-M382, University of California, Berkeley, 1973).
    4. 4)
      • 21. Gao, R., Mekonnen, Y.S., Beyene, W.T., Schutt-Aine, J.E.: ‘Black-box modeling of passive systems by rational function approximation’, IEEE Trans. Adv. Packag., 2005, 28, pp. 209215.
    5. 5)
      • 17. Roychowdhury, J.: ‘Analyzing circuits with widely separated time scales using numerical PDE methods’, IEEE Trans. Circuits Syst., 2001, 5, (48), pp. 578594.
    6. 6)
      • 19. Narayan, O., Roychowdhury, J.: ‘Analyzing oscillators using multitime PDEs’, IEEE Trans. Circuits Syst., 2003, 50, (7), pp. 894903.
    7. 7)
      • 6. Ognen, N., Telichevesky, R., Kundert, K., White, J.: ‘Fundamentals of fast simulation algorithms for RF circuits’, Proc. IEEE, 2007, 95, (3), pp. 600621.
    8. 8)
      • 10. Lambert, J.D.: ‘Numerical methods for ordinary differential systems: the initial value problem’ (John Wiley & Sons, 1991).
    9. 9)
      • 2. Najm, F.N.: ‘Circuit simulation’ (John Wiley & Sons, Inc., 2010).
    10. 10)
      • 3. Pozar, D.M.: ‘Microwave engineering’ (John Wiley & Sons, Inc., 2005, 3rd edn.).
    11. 11)
      • 7. Maas, S.A.: ‘Nonlinear microwave and RF circuits’ (Artech House, Norwood, MA, 2003, 2nd edn.).
    12. 12)
      • 14. Ngoya, E., Larcheveque, R.: ‘Envelope transient analysis: a new method for the transient and steady-state analysis of microwave communication circuits and systems’. IEEE MTT-S Int. Microwave Symp. Digest, 1996, pp. 9094.
    13. 13)
      • 28. Brazil, T.J.: ‘Accurate and efficient incorporation of frequency-domain data within linear and non-linear time domain transient simulation’. IEEE MTT-S Int. Microwave Symp. Digest, June 2005, pp. 798800.
    14. 14)
      • 25. Chiprout, E., Nakhla, M.S.: ‘Asymptotic waveform evaluation and moment matching for interconnect analysis’ (Kluwer, Boston, MA, 1994).
    15. 15)
      • 12. Pedro, J.C., Carvalho, N.B.: ‘Intermodulation distortion in microwave and wireless circuits’ (Artech House, Norwood, 2003).
    16. 16)
      • 24. Deschrijver, D., Mrozowski, M., Dhaene, T., De Zutter, D.: ‘Macromodeling of multiport systems using a fast implementation of the vector fitting method’, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (6), pp. 383385.
    17. 17)
      • 15. Sharrit, D.: ‘New method of analysis of communication systems’. IEEE MTT-S Int. Microwave Symp. Digest, Session WMFA, Nonlinear CAD Workshop, June 1996, pp. 801804.
    18. 18)
      • 9. Chung-Wen, H., Ruehli, A., Brennan, P.: ‘The modified nodal approach to circuit analysis’, IEEE Trans. Circuits Syst., 2003, 24, (6), pp. 504509.
    19. 19)
      • 8. Rudolph, M., Fager, C., Root, D.E.: ‘Nonlinear transistor model parameter extraction techniques’ (Cambridge University Press, 2011).
    20. 20)
      • 11. Aprille, T.J., Trick, T.N.: ‘Steady-state analysis of nonlinear circuits with periodic inputs’, Proc. IEEE, 1972, 60, (1), pp. 108114.
    21. 21)
      • 5. Rizzoli, V., Cecchetti, C., Lipparini, A., Fastri, F.: ‘General-purpose harmonic balance analysis of nonlinear microwave circuits under multi-tone excitation’, IEEE Trans. Microw. Theory Tech., 1988, MTT- 36, pp. 16501660.
    22. 22)
      • 27. Oppenheim, A.V., Schafer, R.V.: ‘Discrete time signal processing’ (Prentice-Hall, 2010, 3rd edn.).
    23. 23)
      • 13. Rodrigues, P.J.: ‘Computer-aided analysis of nonlinear microwave circuits’ (Artech House, Inc., Norwood, MA, 1998).
    24. 24)
      • 23. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10521061.
    25. 25)
      • 26. Lalgudi, S.N., Engin, E., Casinovi, G., Swaminathan, M.: ‘Accurate transient simulation of interconnects characterized by band-limited data with propagation delay enforcement in a modified nodal analysis framework’, IEEE Trans. Electromagn. Compat., 2008, 50, (3), pp. 715729.
    26. 26)
      • 22. Triverio, P., Grivet-Talocia, S., Nakhla, M.S., Canavero, F., Achar, R.: ‘Stability, causality, and passivity in electrical interconnect models’, IEEE Trans. Adv. Packag., 2007, 30, (4), pp. 795808.
    27. 27)
      • 16. Brachtendorf, H., Welsch, G., Laur, R., Bunse-Gerstner, A.: ‘Numerical steady-state analysis of electronic circuits driven by multi-tone signals’, J. Electr. Eng., 1996, 79, pp. 103112.
    28. 28)
      • 20. Lin, S., Kuh, E.S.: ‘Transient simulation of lossy interconnects based on a recursive convolution formulation’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1992, 39, (11), pp. 879892.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2012.0128
Loading

Related content

content/journals/10.1049/iet-map.2012.0128
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading