© The Institution of Engineering and Technology
An analysis of the numerical stability and dispersion properties of the latitude–longitude and geodesic finitedifference timedomain (FDTD) algorithms in modelling the earth–ionosphere system is presented. To the best of the authors' knowledge, it is the first time the properties are analysed via rigorous theoretical derivations. Furthermore, both the analytical and experimental results are compared for the two algorithms. It is found that the geodesic FDTD algorithm has a looser stability limitation than that of the latitude–longitude FDTD algorithm. After the theoretical derivation and the numerical analysis, the global electromagnetic phenomenon was clearly exhibited using the two different algorithms, revealing the correctness of the theoretical analysis and the experiments. Additionally, the potential applications of the two algorithms are briefly proposed.
References


1)

http://www.andrew.cmu.edu/user/sowen/mesh.html, accessed 2009.

2)

Brewer, M., FreitagDiachin, L., Knupp, P., Leurent, T., Melander, D.: `The mesquite mesh quality improvement toolkit', Proc. 12th Int. Meshing Roundtable, 2003, Santa Fe, NM, p. 239–250.

3)

D.A. Randall ,
T.D. Ringler ,
R.P. Heikes ,
P. Jones ,
J. Baumgardner
.
Climate modeling with spherical geodesic grids.
Comput. Sci. Eng.
,
5 ,
32 
41

4)

J.J. Simpson
.
Current and future applications of 3D global earth–ionosphere models based on the fullvector Maxwell's equations FDTD method.
Surv. Geophys.
,
2 ,
105 
130

5)

V.C. Mushtak ,
E. Williams
.
ELF propagation parameters for uniform models of the earth–ionosphere waveguide.
J. Atmos. Sol.Terr. Phys.
,
18 ,
1989 
2001

6)

L. Sevgi ,
F. Akleman ,
L.B. Felsen
.
Groundwave propagation modeling: problemmatched analytical formulations and direct numerical techniques.
IEEE Antennas Propag. Mag.
,
1 ,
55 
75

7)

R. Holland
.
THREDS: A finitedifference timedomain EMP code in 3D spherical coordinates.
IEEE Trans. Nucl. Sci.
,
6 ,
4592 
4595

8)

K.S. Yee
.
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media.
IEEE Trans. Antennas Propag.
,
302 
307

9)

A. Taflove ,
S.C. Hagness
.
(2000)
Computational electrodynamics: the finitedifference timedomain method.

10)

J.J. Simpson ,
A. Taflove
.
Twodimensional FDTD model of antipodal ELF propagation and Schumann resonance of the earth.
IEEE Antennas Wirel. Propag. Lett.
,
2 ,
53 
56

11)

J.J. Simpson ,
A. Taflove
.
Threedimensional FDTD modeling of impulsive ELF propagation about the earthsphere.
IEEE Trans. Antennas Propag.
,
443 
451

12)

S.A. Cummer
.
Ionospheric D region remote sensing using VLF atmospherics.
Radio Sci.
,
1781 
1792

13)

J.P. Berenger
.
Long range propagation of lightning pulses using the FDTD method.
IEEE Trans. Electromagn. Compat.
,
4 ,
1008 
1012

14)

S.A. Cummer
.
Modeling electromagnetic propagation in the earthionosphere waveguide.
IEEE Trans. Antennas Propag.
,
9 ,
1420 
1429

15)

A. Soriano ,
E.A. Navarro ,
D.L. Paul ,
J.A. Porti ,
J.A. Morente ,
I.J. Craddock
.
Finitedifference time domain simulation of the earth–ionosphere resonant cavity: Schumann resonances.
IEEE Trans. Antennas Propag.
,
4 ,
1535 
1541

16)

H. Yang ,
V.P. Pasko
.
Threedimensional finite difference time domain modeling of the earth–ionosphere cavity resonances.
Geophys. Res. Lett.

17)

J.J. Simpson ,
A. Taflove
.
Efficient modeling of impulsive ELF antipodal propagation about the earth sphere using an optimized twodimensional geodesic FDTD grid.
IEEE Antennas Wirel. Propag. Lett.
,
11 ,
215 
218

18)

J.J. Simpson ,
R.P. Heikes ,
A. Taflove
.
FDTD modeling of a novel ELF radar for major oil deposits using a threedimensional geodesic grid of the earthionosphere waveguide.
IEEE Trans. Antennas Propag.
,
6 ,
1734 
1741

19)

W.O. Schumann
.
On the radiation free selfoscillations of a conducting sphere, which is surrounded by an air layer and an ionospheric shell [in German].
Z. Naturforsch.
,
149 
154

20)

Y. Wang ,
H. Xia ,
Q. Cao
.
Analysis of ELF propagation along the earth surface using the FDTD model based on the spherical triangle meshing.
IEEE Antennas Wirel. Propag. Lett.
,
1017 
1020
http://iet.metastore.ingenta.com/content/journals/10.1049/ietmap.2010.0184
Related content
content/journals/10.1049/ietmap.2010.0184
pub_keyword,iet_inspecKeyword,pub_concept
6
6