Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices

Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Along this document, an innovative dual band microstrip patch antenna is proposed for implantable medical devices. Particularly, the covered bands are MICS (402–405 MHz) and ISM (2.4–2.48 GHz). The antenna has a multilayer configuration where the feeding line and the radiating elements are located at different levels. The radiating elements of the antenna are a split ring resonator (SRR) coupled to a Spiral. Both elements are short-circuited to the ground plane to achieve size reduction. In addition, the effects of human body geometry and dielectric properties on the characteristics of the proposed design are studied. Three models of the human body are investigated: one-layer, three-layer and a realistic human body based on the Voxel Man dataset. Finally, simulated results have been validated by measuring return losses of the antenna embedded in mimicking gels, radiation patterns (in anechoic chamber) and radiation efficiency (in reverberation chamber).

References

    1. 1)
      • Arlon© Webpage http://www.arlon-med.com/.
    2. 2)
      • T. Karacolak , R. Cooper , E. Topsakal . Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry. IEEE Trans. Antennas Propag. , 2806 - 2812
    3. 3)
      • F.B. Sachse , C.D. Werner , K. Meyer-Waarden , O. Dössel . Development of a human body model for numerical calculation of electrical fields. Comput. Med. Imaging Graph. , 3 , 165 - 171
    4. 4)
      • F. Nebeker . Golden accomplishments in biomedical engineering. IEEE Eng. Med. Biol. Mag. , 17 - 47
    5. 5)
      • K. Rosengren , P.-S. Kildal , C. Carlsson , J. Carlsson . Characterization of antennas for mobile and wireless terminals in reverberation chambers: improved accuracy by platform stirring. Microw. Opt. Tech. Lett. , 391 - 397
    6. 6)
      • E. Marcelli , L. Scalambra , G. Cercenelli . A new Hermetic antenna for wireless transmission systems of implantable medical devices. Med. Eng. Phys. , 140 - 147
    7. 7)
      • J. Warren , R. Dreher , R. Jaworski , J. Putzke , R. Russie . implantable cardioverter defibrillators. Proc. IEEE , 468 - 479
    8. 8)
      • A. Pommert , K.H. Hohne , B. Pflesser , E. Ritcher , M. Riemer , T. Schieman , R. Schubert , U. Schumacher , U. Tiede . Creating a high-resolution spatial/symbolic model of the inner organs based on the visible human. Med. Image Anal. , 221 - 228
    9. 9)
      • J. Iglesias , D. Graf , P. Pascale , E. Pruvot . The implantable loop recorder: a critical Review. KardiovaskulŁre Med. , 3 , 85 - 93
    10. 10)
      • P.-S. Kildal , C. Carlsson . Detection of a polarization imbalance in reverberation chambers and how to remove it by polarization stirring when measuring antenna efficiencies. Microw. Opt. Tech. Lett. , 145 - 149
    11. 11)
      • C.-M. Lee , T.-C. Yo , F.-J. Huang , C.-H. Luo . Dual-resonant ∏-shape with double l-strips pifa for implantable biotelemetry. Electron. Lett. , 3 , 837 - 838
    12. 12)
      • S. Gabriel , R.W. Lau , C. Gabriel . The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. , 2251 - 2269
    13. 13)
      • S. Gabriel , R.W. Lau , C. Gabriel . The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. , 2271 - 2293
    14. 14)
      • H. Oltman , D. Huebner . Electromagnetically coupled microstrip dipoles. IEEE Trans. Antennas Propag. , 151 - 157
    15. 15)
      • L. Venkatraghavan , V. Chinnapa . Non-cardiac implantable electrical devices: brief review and implications for anesthesiologists. Can. J. Anesth. , 320 - 326
    16. 16)
      • T. Karacolak , A. Hood , E. Topsakal . Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans. Microw. Theory Tech. , 1001 - 1008
    17. 17)
      • P. Soontornpipit , C. Furse , Y.C. Chung . Design of implantable microstrip antenna for communication with medical implants. IEEE Trans. Microw. Theory Tech. , 1944 - 1951
    18. 18)
      • T. Yilmaz , T. Karacolak , E. Topsakal . Characterization and testing of a skin mimicking material for implantable antennas operation at ISM band (2.4 GHz–2,48 GHz). IEEE Antennas and Wirel. Propag. Lett. , 418 - 420
    19. 19)
      • C.-M. Lee , T.-C. Yo , F.-J. Huang , C.-H. Luo . Bandwidth enhancement of planar inverted-f antenna for implantable biotelemetry. Microw. Opt. Tech. Lett. , 749 - 752
    20. 20)
      • J.R. James , P.S. Hall . (1997) Handbook of microstrip and printed antennas.
    21. 21)
      • J. Kim , Y. Rahmat-Samii . Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Trans. Microw. Theory Tech. , 1934 - 1943
    22. 22)
      • Quevedo-Teruel, O., Requena-Carríon, J., Rajo-Iglesias, E., Incĺan-Śanchez, L.: `Antena microstrip compacta multifrecuencia', Pending Patent, 2009, Applicant: Universidad Carlos III de Madrid and Universidad Rey Juan Carlos, P200901663.
    23. 23)
      • Z.D. Liu , P.S. Hall , D. Wake . Dual-frequency planar inverted-F antenna. IEEE Trans. Antennas Propag. , 1451 - 1458
    24. 24)
      • R. Waterhouse , S. Targonski , D. Kokotoff . Design and Performance of small printed antennas. IEEE Trans. Antennas Propag. , 1629 - 1633
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2009.0594
Loading

Related content

content/journals/10.1049/iet-map.2009.0594
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address