Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Miniature antennas based on printed coupled lines emulating anisotropy

Miniature antennas based on printed coupled lines emulating anisotropy

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The author presents small antennas that exploit a new class of slow-wave modes. These modes were originally observed in anisotropic volumetric media and were recently realised using a pair of coupled microstrip transmission lines (TLs) printed on a uniform substrate. The simplicity of the coupled printed lines and slow-group velocity of the photonic crystal modes provided an avenue for designing small conformal antennas. The author reviews the degenerate band edge (DBE) mode antennas and extends their bandwidth by supporting dual resonances. This is done by inserting lumped elements along and between the printed TLs. The resulting coupled double loop (CDL) antenna has 14.7% bandwidth and is as small as λ0/9.8×λ0/9.8 (λ0/16 thick) in footprint. Alternatively, magnetic photonic crystal (MPC) mode is realised using the same DBE-printed structure and by inserting small ferrite sections within the otherwise uniform substrate. This new MPC antenna was realised on a high-contrast (ɛr=10.2) dielectric section and attained a gain of 3.1 dB (73% efficiency) and 8.1% bandwidth on a footprint as small as λ0/9.8×λ0/10.4 (λ0/16 thick).

References

    1. 1)
      • Leong, K.M.K.H., Lee, C.-J., Itoh, T.: `Compact Metamaterial Based Antennas for MIMO Applications', Int. Workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications, 2007, IWAT '07, 21–23 March 2007, p. 87–90.
    2. 2)
      • G. Eleftheriades , K.G. Balmain . (2007) Negative-refraction metamaterials: fundamental principles and applications.
    3. 3)
      • M. Lee , B.A. Kramer , C.-C. Chen , J.L. Volakis . Distributed lumped loads and lossy transmission line model for wideband spiral antenna miniaturization and characterization. IEEE Trans. Antennas Propag. , 10 , 2671 - 2678
    4. 4)
      • J.D. Joannopoulos , R.D. Meade , J.N. Wien . (1995) Photonic crystals – molding the flow of light.
    5. 5)
      • A.K. Skrivervik , J.-F. Zurcher , O. Staub , J.R. Mosig . PCS antenna design: the challenge of miniaturization. IEEE Antennas Propag. Mag. , 4 , 12 - 27
    6. 6)
      • R.A. Shelby , D.R. Smith , S. Schultz . Experimental verification of a negative index of refraction. Science , 77 - 79
    7. 7)
      • Yarga, S., Mumcu, G., Sertel, K., Volakis, J.L.: `Degenerate band edge crystals and periodic assemblies for antenna applications', 2006 IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 6–8 March 2006, p. 408–411.
    8. 8)
      • D.H. Schaubert , D.M. Pozar , A. Adrian . Effect of microstrip antenna substrate thickness and permittivity. IEEE Trans. Antennas Propag. , 6 , 677 - 682
    9. 9)
      • B. Temelkuran , M. Bayindir , E. Ozbay . Photonic crystal based resonant antenna with a very high directivity. J. Appl. Phys. , 1 , 603 - 605
    10. 10)
      • A. Erentok , R.W. Ziolkowski . Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antennas Propag. , 691 - 707
    11. 11)
      • Volakis, J.L., Sertel, K.: `Periodic materials & printed structures for miniature antennas', Antennas and Propagation Conference, 2007, LAPC 2007, 2–3 April 2007, Loughborough, p. 5–8.
    12. 12)
      • J.-H. Lu , K.L. Wong . Slot-loaded meandered rectangular microstrip antenna with compact dualfrequency operation. Electron. Lett. , 1048 - 1050
    13. 13)
      • M.B. Stephanson , K. Sertel , J.L. Volakis . Frozen modes in coupled microstrip lines printed on ferromagnetic substrates. IEEE Microw. Wirel. Compon. Lett. , 5 , 305 - 307
    14. 14)
      • B.A. Kramer , C.-C. Chen , M. Lee , J.L. Volakis . Fundamental limits and design guidelines for miniaturizing ultra-wideband antennas. IEEE Antennas Propag. Mag. , 4 , 57 - 69
    15. 15)
      • S.R. Best . The radiation properties of electrically small folded spherical helix antennas. IEEE Trans. Antennas Propag. , 4 , 953 - 960
    16. 16)
      • A. Figotin , I. Vitebskiy . Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers. Phys. Rev. E , 36619 , 1 - 12
    17. 17)
      • C. Locker , K. Sertel , J.L. Volakis . Emulation of propagation in layered anisotropic media with equivalent coupled microstrip lines. IEEE Microw. Wirel. Compon. Lett. , 12 , 642 - 644
    18. 18)
      • D. Sievenpiper , H.-P. Hsu , J. Schaffner , G. Tangonan , R. Garcia , S. Ontiveros . Low-profile, four-sector diversity antenna on high-impedance ground plane. Electron. Lett. , 16 , 1343 - 1345
    19. 19)
      • G. Mumcu , K. Sertel , J.L. Volakis . Miniature antennas and arrays embedded within magnetic photonic crystals. IEEE Antennas Wirel. Propag. Lett. , 1 , 168 - 171
    20. 20)
      • Irci, E., Sertel, K., Volakis, J.L.: `Ultrathin miniature antenna to mitigate platform loading effects', Antennas and Propagation Society Int. Symp., July 2010, Toronto, Canada, p. 1–4.
    21. 21)
      • Mumcu, G., Sertel, K., Volakis, J.L.: `Partially coupled microstrip lines for printed antenna miniaturization', IEEE Int. Workshop on Antenna Technol., 2009. iWAT 2009, March 2009, p. 1–4.
    22. 22)
      • Irci, E., Sertel, K., Volakis, J.L.: `Antenna miniaturisation for vehicular platforms using printed coupled lines emulating magnetic photonic crystals', Metamaterials, to be published.
    23. 23)
      • A. Figotin , I. Vitebskiy . Nonreciprocal magnetic photonic crystals. Phys. Rev. E , 1 - 20
    24. 24)
      • Sanada, A., Kimura, M., Awai, I., Caloz, C., Itoh, T.: `A planar zeroth-order resonator antenna using a left-handed transmission line', 34thEuropean Microwave Conf., 11–15 Oct. 2004, p. 1341–1344, 3.
    25. 25)
      • R. Porath . Theory of miniaturized shorting-post microstrip antennas. IEEE Trans. Antennas Propag. , 1 , 41 - 47
    26. 26)
      • C. Caloz , T. Itoh . (2006) Electromagnetic metamaterials: transmission line theory and microwave applications.
    27. 27)
      • Special Issue on Metamaterials, IEEE Trans. Antennas Propag., 2003, 51.
    28. 28)
      • E. Yablonovich . Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett.
    29. 29)
      • L.J. Chu . Physical limitations of omni-directional antennas. J. Appl. Phys. , 1163 - 1175
    30. 30)
      • Irci, E., Sertel, K., Volakis, J.L.: `Miniature printed magnetic photonic crystal antennas embedded into vehicular platforms', Proc. 26th Int. Review of Progress in Applied Computational Electromagnetics (Applied Computational Electromagnetics Society, Tampere, Finland), April 2010.
    31. 31)
      • G. Mumcu , K. Sertel , J.L. Volakis . Miniature antenna using printed coupled lines emulating degenerate band edge crystals. IEEE Trans. Antennas Propag. , 6 , 1618 - 1624
    32. 32)
      • H. Mosallaei , K. Sarabandi . Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. , 9 , 2403 - 2414
    33. 33)
      • R. Harrington . Effects of antenna size on gain, bandwidth, and efficiency. J. Nat. Bur. Stand , 1 - 12
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2009.0590
Loading

Related content

content/journals/10.1049/iet-map.2009.0590
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address